Find a Research Lab

Research Lab Results

Results per page:

  • Andrew Feinberg Laboratory

    The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer. Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism.
    Lab Website

    Principal Investigator

    Andrew P. Feinberg, MD

    Department

    Medicine

  • Ami Shah Lab

    Researchers in the Ami Shah Lab study scleroderma and Raynaud’s phenomenon. We examine the relationship between cancer and scleroderma, with a focus on how and if cancer causes scleroderma to develop in some patients. We are currently conducting clinical research to study ways to detect cardiopulmonary complications in patients with scleroderma, biological and imaging markers of Raynaud’s phenomenon, and drugs that improve aspects of scleroderma.
    Lab Website

    Principal Investigator

    Ami Shah, MD

    Department

    Medicine

  • Amit Pahwa Lab

    The Amit Pahwa Lab conducts research on a variety of topics within internal medicine. Our most recent studies have explored misanalysis of urinalysis results, urinary fractional excretion indices in the evaluation of acute kidney injury and nocturnal enuresis as a risk factor for falls in older women. We also investigate cancer diagnostics and treatments. In this area, our recent research has included studying cutaneous shave biopsies for diagnosing primary colonic adenocarcinoma as well as growth inhibition and apoptosis in human brain tumor cell lines using selenium.

    Principal Investigator

    Amit Kumar Pahwa, MD

    Department

    Medicine

  • Joel Pomerantz Laboratory

    The Pomerantz Laboratory studies the molecular machinery used by cells to interpret extracellular signals and transduce them to the nucleus to affect changes in gene expression. The accurate response to extracellular signals results in a cell's decision to proliferate, differentiate or die, and it's critical for normal development and physiology. The dysregulation of this machinery underlies the unwarranted expansion or destruction of cell numbers that occurs in human diseases like cancer, autoimmunity, hyperinflammatory states and neurodegenerative disease. Current studies in the lab focus on signaling pathways that are important in innate immunity, adaptive immunity and cancer, with particular focus on pathways that regulate the activity of the pleiotropic transcription factor NF-kB.

    Principal Investigator

    Joel L. Pomerantz, PhD

    Department

    Biological Chemistry

  • James Hamilton Lab

    The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatocellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments.

    Principal Investigator

    James Hamilton, MD

    Department

    Medicine

  • Jun O. Liu Laboratory

    The Jun O. Liu Laboratory tests small molecules to see if they react in our bodies to find potential drugs to treat disease. We employ high-throughput screening to identify modulators of various cellular processes and pathways that have been implicated in human diseases from cancer to autoimmune diseases. Once biologically active inhibitors are identified, they will serve both as probes of the biological processes of interest and as leads for the development of new drugs for treating human diseases. Among the biological processes of interest are cancer cell growth and apoptosis, angiogenesis, calcium-dependent signaling pathways, eukaryotic transcription and translation.

    Principal Investigator

    Jun Liu, PhD

    Department

    Pharmacology and Molecular Sciences

  • GI Early Detection Biomarkers Lab

    Dr. Meltzer is an internationally renowned leader in the molecular pathobiology of gastrointestinal malignancy and premalignancy. He invented molecular methods to detect loss of heterozygosity in tiny biopsies, triggering an avalanche of research on precancerous lesions. He was the first to comprehensively study coding region microsatellite instability, leading to the identification of several important tumor suppressor genes. He performed several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the GI research paradigm toward genome-wide approaches. He directed an ambitious nationwide validation study of DNA methylation-based biomarkers for the prediction of neoplastic progression in Barrett’s esophagus. Dr. Meltzer founded and led the Aerodigestive Cancer and Biomarker Interdisciplinary Programs at the University of Maryland, also becoming associate director for core sciences at that school’s Cancer Center. He currently holds an endowed professorship and is the director of GI biomarker research at Johns Hopkins. The laboratory group focuses its efforts on the molecular genetics of gastrointestinal cancers and premalignant lesions, as well as on translational research to improve early detection, prognostic evaluation, and treatment of these conditions. Below, some examples of this work are described.

    Principal Investigator

    Stephen J. Meltzer, MD

    Department

    Medicine

  • Gregg Semenza Lab

    The Gregg Semenza Lab studies the molecular mechanisms of oxygen homeostasis. We have cloned and characterized hypoxia-inducible factor 1 (HIF-1), a basic helix-loop-helix transcription factor. Current research investigates the role of HIF-1 in the pathophysiology of cancer, cerebral and myocardial ischemia, and chronic lung disease, which are the most common causes of mortality in the U.S.

    Principal Investigator

    Gregg L. Semenza, MD PhD

    Department

    Pediatrics

  • Gregory Kirk Lab

    Research in the Gregory Kirk Lab examines the natural history of viral infections — particularly HIV and hepatitis viruses — in the U.S. and globally. As part of the ALIVE (AIDS Linked to the Intravenous Experience) study, our research looks at a range of pathogenetic, clinical behavioral issues, with a special focus on non-AIDS-related outcomes of HIV, including cancer and liver and lung diseases. We use imaging and clinical, genetic, epigenetic and proteomic methods to identify and learn more about people at greatest risk for clinically relevant outcomes from HIV, hepatitis B and hepatitis C infections. Our long-term goal is to translate our findings into targeted interventions that help reduce the disease burden of these infections.

    Principal Investigator

    Gregory Dale Kirk, MD MPH PhD

    Department

    Medicine

  • Grant (Xuguang) Tao Lab

    Research in the Grant (Xuguang) Tao Lab explores environmental and occupational epidemiology topics, including workers' compensation and injuries, and nosocomial infections. We conduct research through clinical trials and systematic literature reviews, and also use cancer registry data and GIS applications in environmental epidemiological research. Our recent studies have explored topics such as the effectiveness of lumbar epidural steroid injections following lumbar surgery, the effect of physician-dispensed medication on workers' compensation claim outcomes and how the use of opioid and psychotropic medications for workers' compensation claims impacts lost work time.

    Principal Investigator

    Grant Tao, MD PhD

    Department

    Medicine