Research Lab Results
-
Phenotyping and Pathology Core
The Phenotyping Core promotes functional genomics and other preclinical translational science at Johns Hopkins. We assist and collaborate in the characterization and use of genetically and phenotypically relevant animal models of disease and gene function. -
Andrew Feinberg Laboratory
The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer. Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism. -
Alan Scott Lab
Research in the Alan Scott Lab involves several important areas of genomics. Our team collaborates on a study to investigate the exon and genome sequence variants that determine phenotype, with a specific focus on the genetic bases of cleft lip and palate. We are also involved in assessing and improving genomic technologies to provide next-generation sequencing and analysis of sequence data to the clinical environment. In addition, we have a longstanding interest in the problem of gene annotation and the evolutionary genomics of vertebrates, especially endangered species. -
Gail Geller Lab
The Gail Geller Lab primarily conducts empirical quantitative and qualitative research on the ethical and social implications of genetic testing in the adult, pediatric and family contexts. We have focused on clinical-patient communication under conditions of uncertainty; professionalism and humanism in medical education; cross-cultural variation in concepts of health and disease; and clinician suffering and moral distress. We explore these topics in a range of health care contexts, including genomics, complementary and alternative medicine (CAM) and palliative care. Our researchers have a longstanding interest in medical socialization, provider-patient communication under conditions of uncertainty and cultural differences in attitudes toward health and disease. We also explore the intersection of CAM and bioethics, as well as the role of palliative care in chronic diseases, such as muscular dystrophy and sickle cell disease. -
Christopher Chute Lab
Work in the Christopher Chute Lab involves the management of clinical data to enable effective evidence-based clinical practice and translational research. Recently, we developed an EHR-based genetic testing knowledge base to be integrated into the genetic testing ontology (GTO) and identified potential barriers to pharmacogenomics clinical decision support (CDS) implementation. -
Casey Overby Lab
Research in the Casey Overby Lab focuses on the intersection of public health genomics and biomedical informatics. We’re currently developing applications to support the translation of genomic research to clinical and population-based health care settings. We’re also working to develop knowledge-based ways to use big data — including electronic health records — to improve population health. -
Beer Lab
The goal of research in the Beer Lab is to understand how gene regulatory information is encoded in genomic DNA sequence. Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites that operate to define the activity of cell-type specific enhancers. We are currently focused on improving SVM methodology by including more general sequence features and constraints predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases, experimentally assessing the predicted impact of regulatory element mutation in mammalian cells, systematically determining regulatory element logic from ENCODE human and mouse data, and using this sequence based regulatory code to assess common modes of regulatory element evolution and variation. -
Eugene Shenderov Laboratory
The Shenderov Lab focuses on the elucidation of the mechanisms of immune response and resistance to immunotherapy in Prostate Cancer. This has led to clinical and basic research investigating the presumptive checkpoint inhibitor B7-H3. In pursuit of understanding biomarkers or resistance and response, and regulatory molecules of immune response, we utilize artificial intelligence, immunogenomics, and spatial proteomics and transcriptomics in the laboratory and at the bedside using clinical trial correlative samples. -
Ken Hui Lab
The Hui lab performs basic, translational and clinical research on genetics and genomics of neurogastroenterological disorders. -
Zhaozhu Qiu Laboratory
Ion channels are pore-forming membrane proteins gating the flow of ions across the cell membrane. Among their many functions, ion channels regulate cell volume, control epithelial fluid secretion, and generate the electrical impulses in our brain. The Qiu Lab employs a multi-disciplinary approach including high-throughput functional genomics, electrophysiology, biochemistry, and mouse genetics to discover novel ion channels and to elucidate their role in health and disease.