Users’ Guides to the Medical Literature

X. How to Use an Article Reporting Variations in the Outcomes of Health Services

C. David Naylor, MD, DPhil; Gordon H. Guyatt, MD, MSc; for the Evidence-Based Medicine Working Group

CASE SCENARIO

Your patient, a 78-year-old retired internist, has been complaining of increasing symptoms of benign prostatic hypertrophy. He has long-standing hypertension and coronary artery disease, with remote anterior lateral myocardial infarction and bypass surgery 10 years ago. His left ventricular ejection fraction was recently documented at 20%, and he has been started on an angiotensin-converting enzyme inhibitor. Rectal examination confirms a moderately enlarged prostate, without irregularities, nodularity, or tenderness. As you discuss management options, your patient insists that transurethral prostate surgery is dangerous and that international studies of thousands of patients have proved that, as he puts it, "old-fashioned open prostatectomy is safer than that keyhole surgery." You prescribe a trial of an α-blocker, terazosin, and arrange to see him again. However, the retired internist sounds so convinced that you also resolve to look into the evidence about the two forms of prostatectomy.

THE SEARCH

Later, you sit down in the hospital library, using a program that contains the MEDLINE database from January 1980 to October 1994. You start from "Explode Prostatic Hyperplasia," limit the search to English-language articles on human subjects, and then combine the resulting set with "transurethral" and "mortality" as text words. This yields 27 citations. Browsing through the resulting abstracts, two appear to address your patient’s concern. One, by a Danish group,1 addresses the long-term outcomes of transurethral vs “open” (suprapubic or transvesical) prostatectomy using hospitalization data linked to vital status data for the entire Danish male population from 1977 to 1985. The study relies on administrative data and massive population-based numbers (88,067 men) and shows excessive mortality among patients undergoing transurethral resection of the prostate (TURP). The other report, by Concombre et al,2 offers long-term outcomes data on only 222 patients who underwent either procedure at a Yale teaching hospital in New Haven, Conn, between 1979 and 1981. However, a detailed chart audit was undertaken, and the results suggested that patients undergoing the more extensive open procedure had lower long-term mortality because they were healthier at the outset.

INTRODUCTION

Over the last decade, changes in health care delivery have broadened the range of groups interested in the outcomes of medical care. Concern with costs and with dramatic interregional or international differences in practice among clinicians and institutions has focused the attention of administrators and politicians on the interplay between the processes and outcomes of health services. The evolution of managed care has sharpened interest in measuring and managing the quality of care delivered by individual practitioners, hospitals, and other institutions.

Implicitly, the questions about quality of care and the best way of delivering health services are issues of optimal treatment. For example, once a patient’s problem is identified, the primary care physician first determines what intervention, if any, should be undertaken, and may then face the quality-related issue of choosing a specialist or institution.
tion to offer that service. From a prior
Users' Guide you've learned that deci-
sions about what treatment to provide are
best made in light of evidence from ran-
domized studies with complete fol-
low-up. However, investigators are gen-
erally not going to be able to randomize
patients to different practitioners or hos-
pitals, and focusing on the outcomes as-
associated with these differences in care
will require strategies other than ran-
domized trials. Increasingly, investiga-
tors have looked to large administrative
or other observational databases to ex-
amine the outcomes of care associated
with different procedures, practitioners,
or institutions. Under what circum-
stances should you believe the inferences
made on the basis of such studies?

There is a parallel here with studies
assessing potential harm to patients: it is
impossible to randomize people to smoke
or not, or to various levels of air
pollution, and so observational studies
or "natural experiments" are used as
sources of insight. In a previous Users' Guide we
provided criteria for validity for the
observational studies that inves-
tigators must use when exploring issues
of harm. The challenges are fundamen-
tally the same for comparing outcomes
of two or more sets of health care prac-
titioners or delivery systems. However,
observational studies using administra-
tive databases are growing in scope and
importance and have their own particu-
lar challenges. Therefore, we devote this
Users' Guide to these issues. Table 1
summarizes the key points of the article
about harm, modified here for ex-
amining associations between variations
in processes and outcomes of health care
in the real-world setting.

TABLE 1. Three Core Questions to Ask About
A Study Using an Observational Design to Examine
Sources of Difference in Patients' Outcomes

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are the outcome measures accurate and comprehensive?</td>
</tr>
<tr>
<td>Were there clearly identified, sensible comparison groups?</td>
</tr>
<tr>
<td>Were the comparison groups similar with respect to important determinants of outcome, other than the one of interest?</td>
</tr>
</tbody>
</table>

In sum, many large databases are not
designed for clinical research and may
either mismeasure patients' outcomes or
fail to capture outcomes that are im-
portant to patients and their physicians.
Researchers should therefore report on
the quality and comprehensiveness of
the database. Ideally there should be
independent cross-checks to ensure that
the same outcomes are measured con-
sistently and completely for whatever
unit of comparison is used, eg, verifying
that data on ascertainment or cause of
death are accurate or confirming hos-
apital readmission rates after a specific
surgical procedure in a quality-of-care
study.

How did our two studies of prostate
surgery perform in these respects? And-
ersen et al used vital status data
for the entire population of Denmark,
and therefore mortality was measured in
a reliable and unbiased fashion across
all groups for comparison. Concato et al
reported on all-cause mortality data
within 5 years of the procedure obtained
by hospital chart review and, where
data were inconclusive, from the
national vital status registry.

The complete resection attained by
open prostatectomy obviously elimi-
nates the need for repeat procedures as
occasionally occurs with TURPs. How-
ever, neither study compared the two pro-
cedures with respect to various outcomes
of interest to patients and physicians,
eg, effectiveness in relieving obstruc-
tive or irritative symptoms of benign
prostatic hyperplasia, overall recovery
time, rates of complications such as
impotence or incontinence, and so forth.
Careful prospective data collection is
necessary to capture these outcomes and
provide a more complete tally of the
burdens and benefits of the two treat-
ments being compared. Even with those
data, moreover, there would be uncer-
tainty about the weights that patients
would give to diverse benefits and
harms, and a major challenge in deter-
mining how different outcomes related
to each other and to patients' pretreat-
ment characteristics.

To answer this question, we summa-
rize the key points of the article about
harm, modified here for examin-
ing associations between variations
in processes and outcomes of health care
in the real-world setting.

**ARE THE OUTCOME MEASURES ACCURATE AND
COMPREHENSIVE?**

A randomized therapeutic trial must have
valid and reliable outcome measures; so
must any observational study assessing
patients' outcomes. The easiest out-
comes for health researchers to measure
are those that are defined objectively
and usually captured in large insurance
databases or computerized hospital ad-
ministrative data, eg, death, in-hospital
complications of surgery that are rou-
tinely coded, or readmissions to the hos-
pital. Linkage to vital status registries is
also performed to track out-of-hospital
deaths. However, other outcomes, eg, dis-
ability, discomfort, distress, and dissat-
sation
are important to patients. Func-
tional status and quality-of-life measures
are needed to capture these burdens, but
these measures are not applied in rou-
tine clinical care, and if applied, their
results are not incorporated into admin-
istrative databases. Incorporating these
measures into routine care and admin-
istrative databases, moreover, may gen-
erate more questions than answers. Re-
searchers have begun to understand some
of the factors that predict, for example,
increased risk of mortality after various
types of elective surgery. However, there
is no similar understanding of the factors
that predict functional status and quality
of life.

In sum, many large databases are not
designed for clinical research and may
either mismeasure patients' outcomes
or fail to capture outcomes that are imp-
portant to patients and their physicians.
Researchers should therefore report on
the quality and comprehensiveness of
the data source. Ideally there should be
independent cross-checks to ensure that
the same outcomes are measured con-
sistently and completely for whatever
unit of comparison is used, eg, verifying
that data on ascertainment or cause of
death are accurate or confirming hos-
apital readmission rates after a specific
surgical procedure in a quality-of-care
study.

Table 2. Factors That May Systematically Affect
Outcomes

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>What service was provided?</td>
</tr>
<tr>
<td>For example, variations among two or more management strategies with respect to use of drugs, doses, devices, type of procedure, and the like</td>
</tr>
<tr>
<td>Who provided the service?</td>
</tr>
<tr>
<td>For example, variations among procedural specialists, nurses, patients vs family physicians; by level of experience (house staff vs qualified specialists); by volume of service delivered (high-volume vs low-volume practitioners)</td>
</tr>
<tr>
<td>Where the service was provided?</td>
</tr>
<tr>
<td>For example, variations among hospitals or clinics; between wards in a hospital; between a step-down unit and a conventional intensive care unit; home vs hospital care; by city; by county; by region or nation</td>
</tr>
</tbody>
</table>

When the service was provided:

- For example, variations in timing of service (eg, day or evening, weekend vs weekdays); the July phenocphenon for house staff effects; according to length of stay in hospital; across months (seasonal effects) or years (broad temporal trends)

These questions are best addressed using randomized trials methods; see Guay et al.

Clinicians and health care managers
are interested in a variety of determi-
ants of outcome, the major categories
of which are shown in Table 2. One type
of comparison examines differences
that may be due to variations in quality of
care across individual practitioners or
institutions providing care in a specific
city or region. State agencies now pub-
lish some provider- or institution-
specific outcomes, and researchers some-
times relate these outcomes to the
provider- or institution-specific volume
of the services under scrutiny. This
reflects a belief that "practice makes
perfect"—all things being equal, cen-
ters (and by, inference, physicians or
surgeons) with a higher caseload will
generally achieve better outcomes than
lower-volume centers. For example,
various studies suggest that in-hospital
postoperative mortality after aortic an-
erysm surgery, percutaneous translum-
inal coronary angioplasty, and coronary
artery bypass graft surgery is lower for
centers with more patients managing
more patients. On the other hand, large
tertiary care centers often treat the sick-
est patients and therefore may have
worse outcomes than smaller hospitals.

However, the greater the difference
between service settings being com-
pared, the more difficult it is to be sure
that patients were similar, or to isolate
Table 3.—Determining Whether Differences in Prognosis, Rather Than Differences in the Intervention, Explain Differences in Outcomes

<table>
<thead>
<tr>
<th>Were all important prognostic factors measured?</th>
<th>Were measures of patient prognostic factors reproducible and accurate?</th>
<th>To what extent were patients similar with respect to these factors?</th>
<th>Was multivariate analysis used to adjust for imbalances in prognostic factors?</th>
<th>Did additional analyses (particularly in low-risk subgroups) demonstrate the same results as the primary analysis?</th>
</tr>
</thead>
</table>

which aspects, if any, of the process of care relate to the outcomes observed. This is especially true when comparisons are made on a broad geographic footing between regions or countries in which populations and processes of care differ in many ways. One recent study compared outcomes of Canadian and American patients enrolled in a major trial of thrombolytic therapy for acute myocardial infarction. Rates of revascularization and use of specialist services were much higher in the United States. The investigators used an appropriately broad range of outcomes measures and observed that in terms of symptoms, functional status, psychological well-being, and health-related quality of life, Canadian patients fared somewhat worse than their American counterparts—a finding of obvious concern to Canadian practitioners. However, some of the difference may be because the types of patients recruited by Canadian investigators were more likely to be at risk for worse outcomes irrespective of management. Canadians may also have a different cultural threshold for reporting symptoms or functional impairment.

A third source of variations in outcomes that may occur within similar health systems is the type of treatment provided. This is the sort of comparison that was done in the outcomes studies of TURP vs open prostatectomy described in this article's opening scenario. Such comparisons may avoid some of the broad health system effects and sociocultural or even genetic differences that threaten the validity of outcomes comparisons made across widely disparate populations. However, it is still possible that differences in outcomes may have been due to differences in patients receiving the alternative management strategies, for without randomization, patients will inevitably differ in ways other than the treatment being provided to them. This phenomenon is called "selection bias." When two alternative procedures are being compared in research, selection bias arises from the exercise of good clinical judgment in routine practice. For example, urologists may choose younger, healthier patients to undergo the more extensive open prostatectomy, and older, sicker patients for TURP. Patients then end up differing in obvious or subtle ways that affect their likelihood of having a good or bad outcome. Epidemiologists use the term "confounding" to describe this problem. The validity of any form of observational research is threatened by case selection biases that create noncomparable groups of patients and confound any outcomes comparisons.

Researchers must therefore somehow adjust for differences between groups of patients. The sophistication of these so-called risk adjustment methods is growing rapidly. However, researchers and quality-care evaluators are unlikely to know all the prognostic factors that interact with treatments to affect outcomes. Randomization is important precisely because it distributes these unknown factors in an unbiased manner. The problem worsens when one considers that all known prognostic features may not have been measured, and if they have been measured, they may not have been measured or recorded accurately. Inaccurate measurement or recording is a particular concern when information comes from administrative databases. For instance, Jollis et al compared information about cardiac risk factors in an administrative database in patients undergoing angiography with information collected prospectively for a clinical database by a cardiac fellow who actually saw the patients. A chance-corrected measure of agreement (κ statistic) showed good agreement only for diabetes (83% agreement) and whether patients had an acute myocardial infarction (76%); agreement was moderate for hypertension (56%), poor for the presence of heart failure (30%), and no better than chance (3%) for unstable angina. Hannan et al found similar discrepancies in comparing a cardiac surgery registry with an administrative database in New York State. These inaccuracies mattered: the ability of evaluators to predict mortality was clearly higher with the detailed clinical data as opposed to the administrative database. Thus, the accuracy, reproducibility, and fairness of adjustments for differences in patients can be undermined by poor data quality.

The problem of limited or inaccurate data in insurance databases or computerized hospital discharge abstracts may be partly ameliorated by implementing the information with chart audits. This is time-consuming and expensive, but may be the only way to reduce the chances of missing or misconstruing important differences among groups of patients. A more efficient mechanism may be to establish specific registry mechanisms geared to measuring key patient characteristics, process of care elements, and relevant outcomes.

How, then, can you best assure yourself that, short of randomization, investigators have made the fairest possible outcomes comparison possible? We summarize the steps in Table 3. First, did the researchers convince you through their review of the literature and on the basis of what you know about the determinants of prognosis, that they measured all of the important prognostic factors? This is more likely to occur if the analysis involves chart audits or, better still, a specific clinical registry, as opposed to reliance on available administrative data. Second, since these measures are reflective only as good as the data that go into them, you should consider whether these measures of patients' prognostic factors are reproducible and accurate. Third, did the researchers show the extent to which the groups being compared differed on the prognostic factors that they measured? Fourth, did they use some form of multivariate analysis wherein they tried to adjust simultaneously not only for the obvious prognostic factors, but also for other more subtle differences that may have confounded the comparisons?

Localio and colleagues have recently reported on the consequences of not taking into account all possible prognostic factors. A large corporation's managed care program sought to determine which of the hospitals serving the corporation's employees delivered better quality of care as reflected in a lower number of in-hospital deaths. A consultant concluded that the hospitals differed, and this conclusion influenced the company's choices about hospital selection. As it turned out, an appropriate analysis conducted by a group of academic investigators concluded that the difference between even the hospital with the worst record and the rest could be easily attributable to the play of chance. Furthermore, when the investigators included an adjustment for age, a prognostic factor that had been left out of the consultant's initial analysis, the rank order of the hospitals changed.

Because observational data are so susceptible to selection biases that may confound the outcome comparisons, the researchers should determine whether their results persist when they analyze the data in different ways. For example, if there is a severe imbalance in the allocation of patients with a particularly important prognostic factor, it may make sense to eliminate all patients with that factor and repeat the analyses. Unfortunately, even relative balance on a prognostic factor does not guarantee comparability. One reason is that administrative data and
registries tend to use fairly simple categories, such as whether a disease is or is not present. Yet, the category “disease present” may be associated with a wide range of underlying dysfunction, and therefore equally variable prognosis. Patients with chronic lung disease or chronic heart failure, for instance, can vary from mild to severe, with very different prognostic implications. Thus, apparent balance on the proportion of patients with these diagnoses can mask a situation in which one group has many more severely affected patients than the other. This is even true for advanced age as a prognostic factor, since elderly persons may vary considerably in their overall robustness.

Because of this problem, a useful double-check in any outcomes comparison is to ensure that the findings are replicable within a relatively low-risk subgroup of the patients being examined. By limiting patients in categories associated with widely varying physiological states, we increase the likelihood of a “level playing field” for comparisons.

How do our two studies of prostate surgery measure up in this regard? Andersen et al. considered patients’ ages at surgery, but relied only on diagnoses coded in the computerized hospital records as indicating compromised health status. Even with these limited data, fewer open prostatectomy patients had high-risk diagnoses. They were also younger and had less heart disease and cancer. In a multivariate analysis to try to adjust for these differences, it did appear that TURP continued to confer a 30% to 40% relative increase in the risk of death over several years of follow-up. Extensive sensitivity analyses were performed, including a specific examination of low-risk patients (described as “healthiest men”). Although low-risk patients also showed an excess risk with TURP, the relative magnitude of the increased risk of death was smaller for low-risk patients than for high-risk patients. As Andersen et al. stated: “The extent to which this difference is attributable to the surgical intervention itself remains an open question. The two groups of patients are quite different with regard to age and preoperative health status, and available data may not be sufficient to control such differences through statistical analysis.”

Concato et al. used a chart review method with a detailed and systematic abstraction of information related to health status based on inpatient and ambulatory care records. They carefully confirmed that two reviewers independently agreed on patients’ health status assessments. Patients in the TURP group were again found to be older and sicker. However, in a multivariate analysis, the adjusted excess risk of TURP diminished as the degree of detail on comorbidity was increased. Their best estimate was that TURP actually conferred no increased risk relative to open prostatectomy. Unfortunately, owing to the small sample size, the results were very imprecise, with 95% confidence limits ranging from much increased to much reduced risk with TURP (e.g., from 0.57 to 1.87). Thus, the Yale study highlights the issue of noncomparability and selection biases, but does not rule out harms of the magnitude demonstrated by the Danish investigators. Moreover, the study provides data on outcomes for only a single city; the results may not be generalizable.

CONCLUSIONS AND RESOLUTION

Given the limitations of observational studies of large databases, can we better define the role of this sort of health services research? Observational studies do remain important in the generation of hypotheses about causal pathways from a pathophysiological standpoint. Moreover, once randomized trials have helped define what treatments are likely to work best for your patients, observational outcomes studies generate information about what happens when these practices are used in the real world as opposed to the selected populations of patients and practitioners participating in randomized trials. This information deepens our understanding of practical effectiveness as opposed to theoretical efficacy, and may add new insights since trials do not always measure all the outcomes of interest to patients and physicians.

However, this complementary or supplementary role of large-scale observational studies departs sharply from using administrative data or clinical registries to decide which specific management strategies will yield better outcomes: e.g., surgery vs medical, invasive vs noninvasive, different surgical procedures, and so on. To determine the relative merits of treatments, randomized trials are usually possible and preferable given the unavoidable biases of observational studies.

Do observational studies have any role at all in choosing best practices? Randomized trials are expensive and difficult to conduct and cannot be undertaken for all the clinical questions in which practitioners are interested. Observational studies may identify situations in which one therapy appears so much better than an alternative that bias would be a very unlikely explanation for the difference. As well, the hypothesis-generating role of observational studies is illustrated by the example of open prostatectomy. (Unfortunately, the convenience of transurethral surgery, together with deeply held beliefs about its safety, probably precludes ever mounting a large-scale trial comparing transurethral and open prostatectomy.) Finally, if the outcomes of interest are very rare, such as unusual idiosyncratic side effects of drug use, researchers can only obtain adequate sample sizes through use of administrative databases.

There are other situations in which randomization is not feasible, such as looking for systematic variations in outcomes of similar procedures provided by different practitioners or institutions (“who” or “where” rather than “what”); see Table 2). It is untenable to assume that all hospitals or providers practice equally well and that outcomes comparisons have a role in assessing quality of care. This is especially applicable for some well-defined services (e.g., coronary artery bypass grafting) where there are validated risk-adjustment algorithms12-20 and dedicated registries to measure risk factors and outcomes, so that these comparisons are probably meaningful. In general, however, potential harm to patients from poor quality care must be weighed against the benefits to skilled health workers and fine institutions caused by poorly founded inferences about inferior outcomes.

Given the relatively weak inferences possible from most observational studies of outcomes, alternative strategies for ensuring the quality of medical care should always be considered. For some processes of care (though certainly not all), we caution against the need article in this series, we can accurately document what went on and make confident judgments about its appropriateness. For example, randomized trials show that preoperative antibiotic and antithrombotic prophylaxis improves patients' outcomes after various surgical procedures. Systematically omitting these treatments puts patients at risk and indicates a need for practitioners and institutions to improve their quality of care. We suggest that in most instances it is most efficient to use randomized trials or meta-analyses of trials to establish optimal management strategies, and then assess if quality of care is maintained by monitoring the process of care to ensure that well-proven practices are consistently applied to eligible patients.

What, then, of your patient? Perhaps predictably, given what we know about the limitations of observational studies, your exploration has been inconclusive. Indeed, had you used MEDLINE on CD-ROM for the years prior to 1990, the relevant literature would not have
moved you much further. Related work21,22 on increased mortality after TURP as opposed to open prostatectomy has incorporated extra detail on differences among patients drawn from chart reviews and failed to eliminate the excess mortality seen with TURP; however, the adjustments were arguably less detailed than those used by Concato et al.1 One very small randomized trial has also shown a trend to excess mortality with TURP.23 On the other hand, there has been no definitive trial comparing the two forms of surgery and TURP remains the predominant procedure for benign prostatic hyperplasia.

The retired intern returns in 4 weeks as planned. "Was I right about the risks of the keyhole method?" he asks. You admit that the abandonment of open prostatectomy may have been premature, but caution that his age and medical status make him a poor candidate for the more extensive procedure, even if you could find a urologist competent to do it. Hearing your own advice, you again appreciate that similar selection biases may be the real reason for the apparently higher mortality after TURP. Fortunately, your patient has had an excellent response to the \(\alpha \)-blocker and the issue of prostatectomy can be set aside for some time. As you usher him from the office, he grumbles: "By the way, did you see that the operative mortalities for all the local heart surgeons are on the front page of the newspaper? Thank heavens I retired."

References