Gut Model of Parkinson's Disease

Hanseok Ko, Ph.D.

Department of Neurology, Neuroregeneration Program, Institute for Cell Engineering (ICE), Johns Hopkins University School of Medicine
Transneuronal transmission of α-synuclein

Hypothetical scheme showing inter-neuronal transfer of protein aggregates.
Braak Hypothesis

LP: Lewy body pathology

Nat Rev Neurosci (2017) 18(2):101-113

Early Gastrointestinal (GI) symptoms in PD

A

First group: onset of symptoms related to PD diagnosis

<table>
<thead>
<tr>
<th>Symptoms present</th>
<th>Patients with symptoms, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>Before PD diagnosis</td>
</tr>
<tr>
<td>Bloating</td>
<td>After PD diagnosis</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td></td>
</tr>
</tbody>
</table>

B

Multiorgan α-synuclein deposits in Parkinson’s disease

Postmortem
- Stellate ganglion
- Paravertebral sympathetic ganglia
- Vagus nerve
- Epicardial plexus
- Mesenteric sympathetic ganglia
- Enteric nervous system
- Adrenal gland
- Genitourinary tract

Living patients
- Minor salivary glands
- Submandibular gland
- Stomach
- Colon
- Skin

Clinical Interventions in Aging
2016:11 1601–1608

Brain Sci. 2016, 6, 17
Gastrointestinal injection mouse models of PD

1. Holmqvist et al., 2014

<table>
<thead>
<tr>
<th>Brainstem</th>
<th>0.5d</th>
<th>2-3d</th>
<th>6d</th>
</tr>
</thead>
</table>

2. Manfredsson et al., 2018

3. Uemura et al., 2018

Neurobiology of Disease 112 (2018) 106–118

BSA
PD Lysate
Fibril

Brainstem

Vagus

Intestine

Distance from skullbase, mm

Intestine

Bregma −7.08 mm

Bregma −7.48 mm

4V

dmX

HG
2. Manfredsson et al., 2018

12 Months after colonic PFF injection

No overt loss of nigral dopamine neurons
Injection sites

A

\(\alpha \)-synuclein preformed fibrils (PFF)

Mean = 64.7 nm ± 1.7 nm

B

PS: Pyloric stomach; UD: Upper duodenum
p-α-Syn (LB pathology) in the gut (injection sites)

UD : Upper Duodenum; PS : Pyloric Stomach
p-a-Syn (LB pathology) in Brain

<table>
<thead>
<tr>
<th>PBS</th>
<th>PFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mon</td>
<td>10 mon</td>
</tr>
<tr>
<td>DMV nuclei</td>
<td></td>
</tr>
<tr>
<td>Amygdala</td>
<td></td>
</tr>
<tr>
<td>HIP</td>
<td></td>
</tr>
<tr>
<td>PFC</td>
<td></td>
</tr>
</tbody>
</table>

DMV nuclei

Amygdala

HIP

PFC

LC nuclei

SNC

Olfactory bulb

Striatum

p-a-Syn positive cells (p-a-Syn*/mm²)

- DMV
- LC
- AMG
- SNC
- HIP
- STR
- PFC
- OB

Significance Levels

- **p < 0.01**
- **p < 0.001**
- **n.s.**

Notes

- N.D.: Not determined
Temporal propagation of p-a-Syn (LB pathology) in Brain

Neurodegeneration in SNC

A

TH/Nissl

PBS

PFF

250 μm

SNC region of ventral midbrain

B

TH positive neurons ($\times 10^3$)

PBS

PFF

1 mon 3 mon 7 mon 10 mon

C

Nissl positive cells ($\times 10^3$)

PBS

PFF

1 mon 3 mon 7 mon 10 mon

SNC: Substantia Nigra pars Compacta
Neurodegeneration in Striatum (STR)

A

1 mon 3 mon 7 mon 10 mon
PBS PFF PBS PFF PBS PFF PBS PFF

TH

100 μm

50 μm

% TH fiber density in STR

0 50 100 150
1 mon 3 mon 7 mon 10 mon

n.s n.s *** ***

PBS PFF

B

DA (ng/μg)

0 500 1000 2000
PBS 1 3 7 (mon)

n.s * ***

PBS PFF

C

SPECT/CT: Single Photon Emission Computed Tomography-Computed Tomography

Coronal Transaxial Sagittal MIP

Vehicle

PFF

D/A

L R

% ID/cm³

0 0.5 1.0 1.5
Right Left

** **

PBS PFF
Vagotomy and SNCA KO mice

A

Vagus nerve
Vagotomy
PFF Injection sites
Stomach

TV : Truncal Vagotomy; SNCA-/-: alpha-synuclein knockout

PBS injection in PS and UD

B

7 months PFF injection in PS and UD

TH/Nissl

WT

TV

Snca-/-

TH positive neurons (x 10^3)

0

3

6

9

12

PBS

PFF

250 µm

WT

TV

Snca-/-

n.s

n.s

n.s

n.s

TV : Truncal Vagotomy; SNCA-/-: alpha-synuclein knockout
Vagotomy and SNCA KO mice

A

7 months

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>TV</th>
<th>SNCA^{/-}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td></td>
<td></td>
<td>n.s</td>
</tr>
<tr>
<td>PFF</td>
<td></td>
<td></td>
<td>n.s</td>
</tr>
<tr>
<td>PBS</td>
<td></td>
<td></td>
<td>n.s</td>
</tr>
<tr>
<td>PFF</td>
<td></td>
<td></td>
<td>n.s</td>
</tr>
</tbody>
</table>

B

% TH fiber density in STR

WT TV SNCA^{/-}

DA (ng/µg)

WT TV Snca^{/-}

C

Rotarod test

Latency to fall (sec)

WT TV Snca^{/-}

Pole test

Pole time (sec)

WT TV Snca^{/-}

Forelimb

Force (grams)

WT TV Snca^{/-}
Pole test movies
Non-motor symptoms in GI-injection mice

A, B, and C: Spatial learning and memory
Morris Water Maze movies

Spatial learning and memory
Non-motor symptoms in GI-injection mice

A: Recognition memory

![Graph showing novel object recognition test results for WT, TV, and Snca−/− mice.](image)

B: Fear memory

![Graph showing step-through passive avoidance test results for WT, TV, and Snca−/− mice.](image)

C: Short term or working memory

![Graph showing Y-maze test results for WT, TV, and Snca−/− mice.](image)
Non-motor symptoms in GI-injection mice

A, B, and C: Motor function and emotion

D, E, and F: Anxiety
Elevated Plus Maze movies

Anxiety
Non-motor symptoms in GI-injection mice

G, H, and I: Anxiety

G and H: Depressive like symptom

J and K: Depressive like symptom
Forced swimming test movies

Depressive like symptom
Non-motor symptoms in GI-injection mice

A, B, and C: Olfactory dysfunction

A: Pellet (sweetened cereal) was used in the experiment.

Mice were allowed to eat the food pellet after discovery.

B: Latency time (sec) for buried pellet trial.

C: Latency time (sec) for visible pellet trial.

Baseline: WT, TV, Snca+/

Treatment: PBS, PFF

Days: 1, 2, 3, 4
Gut-to-brain propagation of pathologic α-synuclein via the vagus nerve causes PD
Dopamine neurons degenerate in the pathologic α-synuclein gut-to-brain model of PD
Gut injection of pathologic α-synuclein causes PD-like motor and non-motor symptoms
PD-like pathology and symptoms require endogenous α-synuclein
Acknowledgment

People
Sangjune Kim, Ph.D., Seung-Hwan Kwon, Ph.D., Saebom Lee, Ph.D., Wonjoong Richard Kim, Minjee Kook, Tae-In Kam, Ph.D., Nikhil Panicker, Ph.D., Senthilkumar S. Karuppagounder, Ph.D., Prof. Valina L. Dawson, Ph.D.

Correspondence
: Ted M. Dawson, M.D., Ph.D. and Han Seok Ko, Ph.D.

Collaborators
Catherine A. Foss, Ph.D. (Johns Hopkins Medicine)
Chentian Shen, M.D., Ph.D. (Shanghai Jiao Tong University)
Subhash Kulkarni, M.S., Ph.D. (Johns Hopkins Medicine)
Pankaj J. Pasricha, M.B.B.S., M.D. (Johns Hopkins Medicine)
Gabsang Lee, Ph.D. (Johns Hopkins Medicine)
Martin G. Pomper, M.D., Ph.D. (Johns Hopkins Medicine)
Benjamin Tsui, Ph.D. (Johns Hopkins Medicine)
Taek-soo Lee, Ph.D. (Johns Hopkins Medicine)
Jun Hee Lee, Ph.D. (University of Alabama at Birmingham School of Medicine)

Funding

National Institute of Neurological Disorders and Stroke

THE HELIS FOUNDATION