Biomarkers for Parkinson’s Disease

Liana S. Rosenthal, MD, PhD
Assistant Professor, Department of Neurology, JHU School of Medicine
Director, Clinical Core, Morris K. Udall Parkinson’s Disease Research Center
Objective

To discuss the importance of biomarkers for Parkinson’s disease, efforts that are underway to identify those markers, and potential diagnostic and progression markers.
Outline

- Need for biomarkers
- Biomarker investigations
 - PDBP, JHU Udall Center
- Potential biomarkers

What is a biomarker?

• A characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.
A good biomarker should:

• Diagnose disease
• Predict change
• Change with treatment
• And be related to the underlying disease process

• Ideal example: Sugar levels for diabetes
Non-PD examples of biomarkers

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Disease state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Fever and infection</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>Stroke risk and heart attack</td>
</tr>
<tr>
<td>MRI brain</td>
<td>Stroke</td>
</tr>
<tr>
<td>Genetic testing for Huntington’s Disease</td>
<td>Huntington’s Disease</td>
</tr>
</tbody>
</table>
How do we diagnose PD now?

- History and examination
- Sometimes assisted by dopamine transporter scan (DaTScan)
- Wouldn’t it be great if there were a test or imaging study that:
 - Diagnosed PD?
 - Told us about disease progression?
 - Told us which medications would work or who would get medication side effects?
Biomarkers would have 3 uses

- **Diagnostic Markers**
 - Identify patients with PD
 - Assist with patient selection for clinical studies
 - Direct drug regimen and treatment strategies

- **Progression Markers**
 - Monitor patients as PD progresses
 - Measure disease-based modifications and drug response

- **Pharmacokinetic Markers**
 - Monitor therapeutic effect, and absorption of drug regimens
 - Interpret novel clinical trial results
Parkinson’s Disease biomarkers could improve all aspects of patient care
How does finding a biomarker work?

- See patients and assess their motor, cognitive, psychiatric symptoms
 - Usually involves lots of tests and scales
- Also get blood, sometimes spinal fluid, imaging, urine, DNA, etc
- Connect clinical changes or findings with molecules or imaging
- If the molecule or imaging correlates with the clinical assessments, it is a potential biomarker
A number of investigations are trying to find biomarkers
PDBP is a large consortium (n=\sim 1840)
There are a lot of biofluids available through the PDBP.
JHU PDBP has enrolled 121 participants, all of whom donated blood and spinal fluid.

<table>
<thead>
<tr>
<th></th>
<th>Parkinson’s disease (n=86)</th>
<th>Healthy Controls (n=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (SD)</td>
<td>66.08 (8.17)</td>
<td>66.84 (8.86)</td>
<td>0.65</td>
</tr>
<tr>
<td>Education, years (SD)</td>
<td>16.82 (2.39)</td>
<td>16.84 (2.33)</td>
<td>0.95</td>
</tr>
<tr>
<td>Gender, % Male</td>
<td>69.8</td>
<td>31.42</td>
<td><0.01</td>
</tr>
<tr>
<td>Race, % Caucasian</td>
<td>95.34</td>
<td>88.57</td>
<td>0.17</td>
</tr>
<tr>
<td>MDS-UPDRS motor score, mean (SD)</td>
<td>32.13 (11.86)</td>
<td>1.51 (2.02)</td>
<td><0.01</td>
</tr>
<tr>
<td>MDS-UPDRS total score, mean(SD)</td>
<td>60.30 (24.19)</td>
<td>6.8 (6.18)</td>
<td><0.01</td>
</tr>
<tr>
<td>Total LED, mean (SD)</td>
<td>731.00 (497.88)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Hamilton Anxiety total, mean (SD)</td>
<td>7.77 (4.31)</td>
<td>4.23 (4.01)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hamilton Depression total, mean (SD)</td>
<td>6.32 (4.62)</td>
<td>3.29 (3.75)</td>
<td><0.01</td>
</tr>
<tr>
<td>MoCA total score, mean (SD)</td>
<td>25.46 (4.54)</td>
<td>27.77 (1.24)</td>
<td>0.04</td>
</tr>
<tr>
<td>Cognition, number of individuals</td>
<td>25 Normal Cognition 45 MCI 15 Dementia</td>
<td>27 Normal Cognition 8 MCI</td>
<td><0.01</td>
</tr>
<tr>
<td>Mean follow-up time, years (SD)</td>
<td>2.96 (1.56)</td>
<td>3.02 (1.54)</td>
<td>0.71</td>
</tr>
<tr>
<td>Mean disease duration, years (SD)</td>
<td>6.79 (4.83)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Active Longitudinal Cohort (n = 105*)

<table>
<thead>
<tr>
<th></th>
<th>PD (n = 49)</th>
<th>Atypical PD (n = 14)</th>
<th>Control (n = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, mean (sd)</td>
<td>62.4 (8.5)</td>
<td>68.5 (6.9)</td>
<td>69.8 (7.6)</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>44.9</td>
<td>64.3</td>
<td>42.9</td>
</tr>
<tr>
<td>Race (% Caucasian)</td>
<td>93.9</td>
<td>100</td>
<td>92.9</td>
</tr>
<tr>
<td>Education in years, mean (sd)</td>
<td>17.0 (3.1)</td>
<td>14.8 (2.9)</td>
<td>16.9 (2.4)</td>
</tr>
<tr>
<td>Age at disease onset, mean (sd)</td>
<td>54.7 (9.5)</td>
<td>63.5 (7.2)</td>
<td>n/a</td>
</tr>
<tr>
<td>Disease duration, mean (sd)</td>
<td>7.7 (6.2)</td>
<td>5.0 (3.4)</td>
<td>n/a</td>
</tr>
<tr>
<td>Hoehn & Yahr Stage distribution</td>
<td>20% I, 74% II, 6% III, 0% IV, 0% V</td>
<td>0% I, 44% II, 21% III, 14% IV, 21% V</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Pathology

- Loss of dopamine producing cells is thought to be responsible for the motor changes observed in PD.

- Alpha-synuclein is the “bad” protein.

http://pathology.mc.duke.edu/neuropath/CNSlecture4/CNSlecture4.htm
Alpha-synuclein positive Lewy bodies are the primary pathology in PD
How do we get the “bad” alpha-synuclein and cell loss?

- Protein cascade is like a domino cascade
- Each domino is a potential biomarker
What happens when abnormal alpha-synuclein goes into the neuron?
PAR levels separate PD and control participants

![Graph showing mean PAR concentration over visits for Parkinson's Disease (blue) and Healthy Controls (red). The graph includes error bars and asterisks indicating significant differences.](image)
PAR levels may also relate to disease duration, severity
Different forms of alpha-synuclein may also predict cognitive changes
We can also look at numerous molecules at once in the blood.
So, have we found a biomarker?

- Maybe…
- Next steps including looking at whether each molecule is still a biomarker in other cohorts (groups of patients and controls)
- Also determine if the marker changes with newer treatments
- Also want to test each biomarker to see if it is specific to PD
Thank you and questions?