Find a Research Lab

Research Lab Results

Results per page:

  • Shaoyong Yu Lab

    The Yu Lab does basic and translational research on Sensory physiology and disorders of the gastrointestinal tract.

    Principal Investigator

    Shaoyong Yu MD

    Department

    Medicine

  • James Knierim Laboratory

    Research in the James Knierim Laboratory attempts to understand the flow of information through the hippocampal formation and the computations performed by the various subfields of the hippocampus and its inputs from the entorhinal cortex. To address these issues, we use multi-electrode arrays to record the extracellular action potentials from scores of well-isolated hippocampal neurons in freely moving rats. These neurons, or ""place cells,"" are selectively active when the rat occupies restricted locations in its environment and help to form a cognitive map of the environment. The animal uses this map to navigate efficiently in its environment and to learn and remember important locations. These cells are thought to play a major role in the formation of episodic (autobiographical) memories. Place cells thus constitute a tremendous opportunity to investigate the mechanisms by which the brain transforms sensory input into an internal, cognitive representation of the world and then uses this representation as the framework that organizes and stores memories of past events.

    Principal Investigator

    James Knierim PhD

    Department

    Neuroscience

  • GI Biomarkers Laboratory

    The GI Biomarkers Laboratory studies gastrointestinal cancer and pre-cancer biogenesis and biomarkers. The lab is led by Dr. Stephen Meltzer, who is known for his research in the molecular pathobiology of gastrointestinal malignancy and premalignancy. Research in the lab has led to several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the gastrointestinal research paradaigm toward genome-wide approaches.

    Principal Investigator

    Stephen J. Meltzer MD

    Department

    Medicine

    Oncology

  • Bradley Undem Lab

    Research in the Bradley Undem Lab centers around the hypothesis that the peripheral nervous system is directly involved in the processes of inflammation. This hypothesis is being studied primarily in the central airways and sympathetic ganglia. We are addressing this in a multidisciplinary fashion, using pharmacological, electrophysiological, biochemical and anatomical methodologies.

    Principal Investigator

    Bradley J. Undem PhD

    Department

    Medicine

  • Brown Lab

    The Brown Lab is focused on the function of the cerebral cortex in the brain, which underlies our ability to interact with our environment through sensory perception and voluntary movement. Our research takes a bottom-up approach to understanding how the circuits of this massively interconnected network of neurons are functionally organized, and how dysfunction in these circuits contributes to neurodegenerative diseases like amyotrophic lateral sclerosis and neuropsychiatric disorders, including autism and schizophrenia. By combining electrophysiological and optogenetic approaches with anatomical and genetic techniques for identifying cell populations and pathways, the Brown Lab is defining the synaptic interactions among different classes of cortical neurons and determining how long-range and local inputs are integrated within cortical circuits. In amyotrophic lateral sclerosis, corticospinal and spinal motor neurons progressively degenerate. The Brown Lab is examining how abnormal activity within cortical circuits contributes to the selective degeneration of corticospinal motor neurons in an effort to identify new mechanisms for treating this disease. Abnormalities in the organization of cortical circuits and synapses have been identified in genetic and anatomical studies of neuropsychiatric disease. We are interested in the impact these abnormalities have on cortical processing and their contribution to the disordered cognition typical of autism and schizophrenia.
    Lab Website

    Principal Investigator

    Solange P. Brown MD PhD

    Department

    Neuroscience

  • David Shade Lab

    Areas of research in the David Shade Lab include data-management methods for clinical research, design and conduct of clinical trials, and internet usage for data acquisition and distribution.

    Principal Investigator

    Dave Shade JD

    Department

    Medicine

  • Veit Stuphorn Laboratory

    The Veit Stuphorn Laboratory studies the neurophysiological mechanisms that underlie decision making and self-control. We record the activity of single neurons in awake animals that are engaged in decision-making processes. This allows us to identify the types of signals that neurons in specific parts of the brain represent and the computations they carry out. We also study human subjects in the same tasks with the help of fMRI. These parallel experiments provide comparative information about decision processes in human and non-human primates.

    Principal Investigator

    Veit Stuphorn PhD

    Department

    Neuroscience

  • Neuro-Vestibular and Ocular Motor Laboratory

    In our laboratory we study the brain mechanisms of eye movements and spatial orientation. -How magnetic stimulation through transcranial devices affects cortical brain regions -Neural mechanisms underlying balance, spatial orientation and eye movement -Mathematical models that describe the function of ocular motor systems and perception of spatial orientation -Short- and long-term adaptive processes underlying compensation for disease and functional recovery in patients with ocular motor, vestibular and perceptual dysfunction Developing and testing novel diagnostic tools, treatments, and rehabilitative strategies for patients with ocular motor, vestibular and spatial dysfunction

    Principal Investigator

    Amir Kheradmand MD

    Department

    Neurology

  • Rao Laboratory

    The Rao Laboratory studies the roles of intracellular cation transport in human health and disease using yeast as a model organism. Focus areas include intracellular Na+(K+)/H+ exchange and Golgi CA2+(MN+) ATPases.
    Lab Website

    Principal Investigator

    Rajini Rao PhD

    Department

    Physiology

  • Svetlana Lutsenko Laboratory

    The research in the Svetlana Lutsenko Laboratory is focused on the molecular mechanisms that regulate copper concentration in normal and diseased human cells. Copper is essential for human cell homeostasis. It is required for embryonic development and neuronal function, and the disruption of copper transport in human cells results in severe multisystem disorders, such as Menkes disease and Wilson's disease. To understand the molecular mechanisms of copper homeostasis in normal and diseased human cells, we utilize a multidisciplinary approach involving biochemical and biophysical studies of molecules involved in copper transport, cell biological studies of copper signaling, and analysis of copper-induced pathologies using Wilson's disease gene knock-out mice.
    Lab Website

    Principal Investigator

    Svetlana Lutsenko PhD

    Department

    Medicine

    Physiology