Covid-19 Story Tip: Inside a Coronavirus-Infected Cell


Coronaviruses are tiny. They’re so small that scientists need a special microscope to spot them. This video animation is an artist’s rendering of how coronaviruses invade, replicate and assemble a new army of viruses inside a host cell.

To build a better vaccine, stop a virus from replicating or attaching to host cells, help the immune system fight the virus, or find any type of remedy to the current COVID-19 pandemic, scientists need to understand how coronaviruses work. These scientists focus on the so-called “basic” or “fundamental” biology of viruses.

For example, coronaviruses are known to invade and replicate within host cells, and newly made viruses escape through the host cell’s outer membrane. But instead of going straight to the cell membrane to get ready to be shipped out of the host cell, coronaviruses stop at a pancakelike structure in the cell called the Golgi complex, a kind of post office that sorts and processes proteins and spits them out of the cell after enclosing the proteins in a compartment called a vesicle.

Johns Hopkins scientists have been working to determine why coronaviruses make this extra stop in their replication and escape process. One reason, they found, is that coronaviruses neutralize the acidity of the Golgi complex, potentially paving a better path to help the viruses, with their spiky halo, escape cells.

Cell biologist Carolyn Machamer is available to discuss the role of basic science research in overcoming pandemics. Watch the video on how coronaviruses work.

For information from Johns Hopkins Medicine about the coronavirus pandemic, visit For information on the coronavirus from throughout the Johns Hopkins enterprise, including the Johns Hopkins Bloomberg School of Public Health and The Johns Hopkins University, visit