Find a Research Lab

Research Lab Results

Results per page:

  • Translational Neurobiology Laboratory

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and cell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases.
  • Systems Biology Laboratory

    The Systems Biology Lab applies methods of multiscale modeling to problems of cancer and cardiovascular disease, and examines the systems biology of angiogenesis, breast cancer and peripheral artery disease (PAD). Using coordinated computational and experimental approaches, the lab studies the mechanisms of breast cancer tumor growth and metastasis to find ways to inhibit those processes. We use bioinformatics to discover novel agents that affect angiogenesis and perform in vitro and in vivo experiments to test these predictions. In addition we study protein networks that determine processes of angiogenesis, arteriogenesis and inflammation in PAD. The lab also investigates drug repurposing for potential applications as stimulators of therapeutic angiogenesis, examines signal transduction pathways and builds 3D models of angiogenesis. The lab has discovered over a hundred novel anti-angiogenic peptides, and has undertaken in vitro and in vivo studies testing their activity under different conditions. We have investigated structure-activity relationship (SAR) doing point mutations and amino acid substitutions and constructed biomimetic peptides derived from their endogenous progenitors. They have demonstrated the efficacy of selected peptides in mouse models of breast, lung and brain cancers, and in age-related macular degeneration.

    Principal Investigator

    Aleksander S. Popel, Ph.D.

    Department

    Biomedical Engineering

  • Systems Neurobiology Laboratory

    The Systems neurobiology Laboratory is a group of laboratories that all study various aspects of neurobiology. These laboratories include: (1) computational neurobiology Laboratory: The goal of their research is to build bridges between brain levels from the biophysical properties of synapses to the function of neural systems. (2) computational Principles of Natural Sensory Processing: Research in this lab focuses on the computational principles of how the brain processes information. (3) Laboratory for Cognitive neuroscience: This laboratory studies the neural and genetic underpinnings of language and cognition. (4) Sloan-Swartz Center for Theoretical neurobiology: The goal of this laboratory is develop a theoretical infrastructure for modern experimental neurobiology. (5) Organization and development of visual cortex: This laboratory is studying the organization and function of neural circuits in the visual cortex to understand how specific neural components enable visual perception and to elucidate the basic neural mechanisms that underlie cortical function. (6) Neural mechanism of selective visual attention: This laboratory studies the neural mechanisms of selective visual attention at the level of the individual neuron and cortical circuit, and relates these findings to perception and conscious awareness. (7) Neural basis of vision: This laboratory studies how sensory signals in the brain become integrated to form neuronal representation of the objects that people see.
  • Brain Cancer Biology and Therapy Lab

    The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the genetic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by large scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells.
    Lab Website

    Principal Investigator

    Gregory Riggins, M.D., Ph.D.

    Department

    Neurosurgery

    Research Areas

  • Pablo Iglesias Lab

    Investigators in the Pablo Iglesias Lab use analytic tools from control systems and dynamical systems to study cell biology, including biological signal transduction pathways. Our research interests include the ways cells interpret directional cues to guide their motion, regulatory mechanisms that control cell division, and the sensing and actuation that enable cells to maintain lipid homeostasis.
    Lab Website

    Principal Investigator

    Pablo A. Iglesias, Ph.D.

    Department

    Biomedical Engineering

  • Photini Sinnis Lab

    Research in the Photini Sinnis Lab explores the fundamental biology of the pre-erythrocytic stages of malaria. Our team is focused on the sporozoite stage of Plasmodium, which is the infective stage of the malaria parasite, and the liver stages into which they develop. We use classic biochemistry, mutational analysis, and in vitro and in vivo assays to better understand the molecular interactions between the parasite and its mosquito and mammalian hosts. Our goal is to translate our findings to help develop treatments and a vaccine that target the malaria parasite.

    Principal Investigator

    Photini Sinnis, M.D.

    Department

    Medicine

  • Arturo Casadevall Lab

    The Arturo Casadevall Lab uses a multidisciplinary approach to explore two key topics within microbiology and immunology: how microbes cause disease and how hosts can protect themselves against those microbes. Much of our research focuses on the fungus Cryptococcus neoformans, which frequently causes lung infections in people with impaired immunity. We also work with the microorganism Bacillus anthracis, a bacterium that causes anthrax and is frequently used in biological warfare. Our goal is to devise antibody-based countermeasures to protect against this and other similar threats.

    Principal Investigator

    Arturo Casadevall, M.D., Ph.D., M.S.

    Department

    Medicine

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis, particularly the pathogenesis of nasal polyps, as well as inflammation on the olfactory epithelium. Diverse techniques in molecular biology, immunology, and physiology are utilized to study epithelial cell innate immunity, olfactory loss, and response to viral infection. Ongoing work explores how epithelial cells of the sinuses and olfactory mucosa participate in the immune response and contribute to chronic inflammation. The lab creates and employs transgenic mouse models of chronic nasal/sinus inflammation to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and COVID-19.

    Principal Investigator

    Andrew Lane, M.D.

    Department

    Otolaryngology - Head and Neck Surgery

  • Alain Labrique Lab

    The Alain Labrique Lab conducts research on infectious diseases and public health. Our team studies the various factors that lead to maternal and neonatal mortality, particularly in underserved populations in South Asia, using the tools of infectious disease epidemiology, molecular biology and biostatistics. We work to better understand factors such as the interface of micronutrient deficiency and maternal/infant mortality and the prevention of nosocomial infections through mechanistic or nutritional interventions. We also have a longstanding interest in technologies that may enable early detection of disease.

    Principal Investigator

    Alain Bernard Labrique, Ph.D., M.H.S.

  • Caren L. Freel Meyers Laboratory

    The long-term goal of the Caren L. Freel Meyers Laboratory is to develop novel approaches to kill human pathogens, including bacterial pathogens and malaria parasites, with the ultimate objective of developing potential therapeutic agents. Toward this goal, we are pursuing studies of bacterial isoprenoid biosynthetic enzymes comprising the methylerythritol phosphate (MEP) pathway essential in many human pathogens. Studies focus on understanding mechanism and regulation in the pathway toward the development of selective inhibitors of isoprenoid biosynthesis. Our strategies for creating new anti-infective agents involve interdisciplinary research in the continuum of organic, biological and medicinal chemistry. Molecular biology, protein expression and biochemistry, and synthetic chemistry are key tools for our research.