Find a Research Lab

Research Lab Results

Results per page:

  • Frueh Laboratory

    The Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems.
  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of premature infants and the leading cause of death and disability from gastrointestinal disease in newborns. The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome. The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant.
    Lab Website

    Principal Investigator

    David Joel Hackam MD PhD

    Department

    Pediatrics

    Surgery

  • Hey-Kyoung Lee Lab

    The Hey-Kyoung Lee Lab is interested in exploring the cellular and molecular changes that happen at synapses to allow memory storage. We use various techniques, including electrophysiological recording, biochemical and molecular analysis, and imaging, to understand the cellular and molecular changes that happen during synaptic plasticity. Currently, we are examining the molecular and cellular mechanisms of global homeostatic synaptic plasticity using sensory cortices as model systems. In particular, we found that loss of vision elicits global changes in excitatory synaptic transmission in the primary visual cortex. Vision loss also triggers specific synaptic changes in other primary sensory cortices, which we postulate underlies sensory compensation in the blind. One of our main research goals is to understand the mechanisms underlying such cross-modal synaptic plasticity. We are also interested in elucidating the events that occur in diseased brains. In collaboration with other researchers, we are analyzing various mouse models of Alzheimer's disease, especially focusing on the possible alterations in synaptic plasticity mechanisms.

    Principal Investigator

    Hey-Kyoung Lee PhD

    Department

    Neuroscience

  • HPTN (HIV Prevention Trials Network) Network Lab

    HPTN (HIV Prevention Trials Network) Network Laboratory (NL) is responsible for collecting, testing and reporting results from biological samples; assisting in the development and quality assurance assessment of local laboratory capacity at the Clinical Trials Units (CTUs) participating in HPTN clinical trials (www.hptn.org); and identifying and implementing state-of-the-art assays and technologies to advance the scientific agenda of the Network.
    Lab Website

    Principal Investigator

    Susan Eshleman MD PhD

    Department

    Pathology

  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown. We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease. Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal behavior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation.

    Principal Investigator

    Michael J. Wolfgang PhD

    Department

    Biological Chemistry

  • Miho Iijima Laboratory

    The Miho Iijima Laboratory works to make a further connection between cells' signaling events and directional movement. Our researchers have identified 17 new PH domain-containing proteins in addition to 10 previously known genes in the Dictyostelium cDNA and genome database. Five of these genes contain both the Dbl and the PH domains, suggesting these proteins are involved in actin polymerization. A PTEN homologue has also been identified in Dictyostelium that is highly conserved with the human gene. We are disrupting all of these genes and studying their roles in chemotaxis.
    Lab Website

    Principal Investigator

    Miho Iijima PhD

    Department

    Cell Biology

  • Molecular Mechanisms of Cellular Mechanosensing (Robinson Lab)

    The Robinson Lab studies the way in which mechanical stress guide and direct the behavior of cells, including when they are part of tissues, organs and organ systems.
    Lab Website

    Principal Investigator

    Douglas Robinson PhD

    Department

    Cell Biology

  • Michael Matunis Lab

    Research in the Michael Matunis Lab focuses on the SUMO family of small ubiquitin-related proteins. We study the covalent conjugation of SUMOs to other cellular proteins, which regulates numerous processes needed for cell growth and differentiation, and which, when defective, can lead to conditions such as cancer, neurodegenerative disease and diabetes.

    Principal Investigator

    Michael J. Matunis PhD

    Department

    Cell Biology

  • Mihaela Pertea Lab

    The Mihaela Pertea Lab develops computational tools for RNA sequence analysis, gene finding, splice-site prediction and sequence-motif finding. Previous research projects led to the development of open-source software systems related to finding genes.
    Lab Website

    Principal Investigator

    Mihaela Pertea PhD

    Department

    Medicine

  • Theresa Shapiro Laboratory

    The Theresa Shapiro Laboratory studies antiparasitic chemotherapy. On a molecular basis, we are interested in understanding the mechanism of action for existing antiparasitic agents, and in identifying vulnerable metabolic targets for much-needed, new, antiparasitic chemotherapy. Clinically, our studies are directed toward an evaluation, in humans, of the efficacy, pharmacokinetics, metabolism and safety of experimental antiparasitic drugs.

    Principal Investigator

    Theresa A. Shapiro MD PhD

    Department

    Medicine