Find a Research Lab

Research Lab Results

Results per page:

  • The Responsive Imaging BioSensors & BioEngineering (RISE) Lab

    The RISE Lab’s research focuses on developing and evaluating cellular/molecular imaging biosensors and drug/nanoparticle delivery systems for improved therapeutic indices in precision medicine.

    Research Areas

  • Peter Abadir Lab

    Research in the Peter Abadir Lab focuses on the renin-angiotensin system (RAS), a signaling pathway that regulates blood pressure and has been linked independently to both aging and inflammation. We’re particularly interested in changes in RAS that occur with aging. We also study signal transduction and the role of the crosstalk between angiotensin II receptor in aging and are interested in understanding the function of angiotensin II in the process of vascular aging.

    Principal Investigator

    Peter Abadir MD

    Department

    Medicine

  • Andrew Feinberg Laboratory

    The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer. Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism.
    Lab Website

    Principal Investigator

    Andrew P. Feinberg MD

    Department

    Medicine

  • Agrawal Lab

    The Agrawal Lab is focused on the medical and surgical treatment of otologic and neurotologic conditions. Research is focused on the vestibular system (the inner ear balance system), and how the function of the vestibular system changes with aging. Particular focus is given to study how age-related changes in vestibular function influence mobility disability and fall risk in older individuals.
  • Jun Hua Lab

    Dr. Hua's research has centered on the development of novel MRI technologies for in vivo functional and physiological imaging in the brain, and the application of such methods for studies in healthy and diseased brains. These include the development of human and animal MRI methods to measure functional brain activities, cerebral perfusion and oxygen metabolism at high (3 Tesla) and ultra-high (7 Tesla and above) magnetic fields. He is particularly interested in novel MRI approaches to image small blood and lymphatic vessels in the brain. Collaborating with clinical investigators, these techniques have been applied 1) to detect functional, vascular and metabolic abnormalities in the brain in neurodegenerative diseases such as Huntingdon's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD) and mental disorders such as schizophrenia; and 2) to map brain functions and cerebrovascular reactivity for presurgical planning in patients with vascular malformations, brain tumors and epilepsy.
    Lab Website

    Principal Investigator

    Jun Hua PhD

    Department

    Radiology and Radiological Science

  • Jochen Steppan Lab

    Research in the Jochen Steppan Lab primarily focused on vascular stiffness related to aging. We are currently researching LOXL2 (lysine-oxidase-like-2), which might be intimately involved in the development or progression of vascular stiffness. We aim to better understand LOXL2's role in the vasculature and hope that this work leads to the characterization of a novel therapeutic target. This is important in the treatment of cardiovascular diseases in the aging population.
  • James Pekar Lab

    How do we see, hear, and think? More specifically, how can we study living people to understand how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make ""movies"" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology. Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techniques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
  • Janet Record Lab

    Research in the Janet Record Lab focuses on medical education and patient-centered care. We’re currently developing a curriculum for internal medicine residents in the inpatient general medicine service setting. The curriculum teaches residents to use hand-carried ultrasound for imaging the inferior vena cava to assess volume status.

    Principal Investigator

    Janet Record MD

    Department

    Medicine

  • Jinyuan Zhou Lab

    Dr. Zhou's research focuses on developing new in vivo MRI and MRS methodologies to study brain function and disease. His most recent work includes absolute quantification of cerebral blood flow, quantification of functional MRI, high-resolution diffusion tensor imaging (DTI), magnetization transfer mechanism, development of chemical exchange saturation transfer (CEST) technology, brain pH MR imaging, and tissue protein MR imaging. Notably, Dr. Zhou and his colleagues invented the amide proton transfer (APT) approach for brain pH imaging and tumor protein imaging. His initial paper on brain pH imaging was published in Nature Medicine in 2003 and his most recent paper on tumor treatment effects was published in Nature Medicine in 2011. A major part of his current research is the pre-clinical and clinical imaging of brain tumors, strokes, and other neurologic disorders using the APT and other novel MRI techniques. The overall goal is to achieve the MRI contrast at the protein and peptide level without injection of exogenous agents and improve the diagnostic capability of MRI and the patient outcomes.

    Principal Investigator

    Jinyuan Zhou PhD

    Department

    Radiology and Radiological Science

  • J. Webster Stayman Lab

    The J. Webster Stayman Lab studies both emission tomography and transmission tomography (CT, tomosynthesis and cone-beam CT). Our research activities relate to 3-D reconstruction, including model-based statistical / iterative reconstruction, regularization methods and modeling of imaging systems. We are developing a generalized framework for penalized likelihood (PL) reconstruction combining statistical models of noise and image formation with incorporation of prior information, including patient-specific prior images, atlases and models of components / devices known to be in the field of view. Our research includes algorithm development and physical experimentation for imaging system design and optimization.
    Lab Website

    Principal Investigator

    Web Webster Stayman PhD

    Department

    Biomedical Engineering