Tzyy-Choou Wu, M.D., Ph.D., M.P.H.

Headshot of Tzyy-Choou Wu
  • Director, Gynecologic Pathology Division
  • Professor of Pathology
Male

Languages: English, Chinese, Taiwanese

Expertise

Cervical Cancer, Head and Neck Cancers, Pathology

Research Interests

CD8+ T lymphocytes; cervical cancer; vaccination; human papillomavirus (HPV); HPV vaccine; cellular pathology; molecular pathology; T cell biology; tumor immunology; HPV immunology ...read more

Locations

The Johns Hopkins Hospital (Main Entrance)

1800 Orleans St.
Sheikh Zayed Tower
Baltimore, MD 21287
The Johns Hopkins Hospital (Main Entrance) - Google Maps

Background

Dr. Tzyy-Choou Wu is a professor of pathology, oncology, and obstetrics and gynecology at the Johns Hopkins University School of Medicine. He holds a joint appointment in the Bloomberg School of Public Health Department of Molecular Microbiology and Immunology.

Dr. Wu’s clinical interests include gynecological pathology, cervical cancer, head and neck cancers, and the molecular diagnosis of viral infections.

He and Dr. Chien-Fu Hung also oversee the Cervical Cancer Research Lab, which is working to develop vaccines and immunotherapeutic strategies to prevent and treat human papillomavirus (HPV)-associated cervical cancer.

Dr. Wu earned his M.D. at National Taiwan University College of Medicine before earning both his Ph.D. in molecular virology and his M.P.H. in epidemiology at the Johns Hopkins Bloomberg School of Public Health. He completed a residency in anatomic pathology and a fellowship in gynecologic pathology at Johns Hopkins. He joined the Johns Hopkins faculty as an assistant professor in 1995.

Dr. Wu has published more than 260 academic journal articles, written scores of editorials, reviews and book chapters, and delivered many invited lectures. He also holds a number of patents.

He serves on the editorial boards of publications that include the American Journal of Pathology, International Journal of Gynecological Pathology, Gene Therapy and Cancer Research.

Dr. Wu is a member of professional organizations that include the American Society for Clinical Investigation, American Association for Cancer Research and International Society of Gynecological Pathologists. Among his many activities, Dr. Wu serves as director of the Cervical Cancer Steering Committee and as a member of the Kimmel Comprehensive Cancer Center Research Council.

...read more

Titles

  • Director, Gynecologic Pathology Division
  • Director, Cervical Cancer Research Lab
  • Professor of Pathology
  • Professor of Gynecology and Obstetrics
  • Professor of Oncology

Departments / Divisions

Centers & Institutes

Education

Degrees

  • MD; National Taiwan University School of Medicine (1982)

Residencies

  • Pathology; Johns Hopkins University School of Medicine (1992)

Fellowships

  • Pathology; Johns Hopkins University School of Medicine (1995)

Board Certifications

  • American Board of Pathology (Anatomic Pathology) (1992)

Research & Publications

Research Summary

Dr. Wu’s research focuses on human papillomavirus (HPV) vaccine development.

He has created a unique preclinical murine tumor model that expresses HPV-16 oncogenic proteins (E6 and E7) and simulates specific molecular events in the progression of HPV+ precancerous lesions (CIN 3) to invasive cancer.

This model has been widely used and tested by researchers worldwide for HPV vaccine development.

Dr. Wu has focused on identifying immunotherapeutic and vaccine approaches to enhance antigen processing and presentation by dendritic cells. These include intracellular targeting and spreading strategies aimed at preventing and treating cervical lesions and cancers. Intracellular targeting directs antigens to different subcellular locations to enhance antigen processing and presentation.

Intercellular spreading helps antigens distribute to neighboring cells by taking advantage of unique intercellular transport properties that allows for an increase in the amount of antigen presented to effector cells.

Dr. Wu has created an innovative approach that combines both antigen-specific immunotherapy and anti-angiogenesis to treat HPV E7-expressing tumors.

The impressive preclinical data derived from these studies have led to several clinical trials that are either currently under way or will soon commence. The continued development of these strategies will facilitate the development of vaccines that generate a potent immune response and antitumor effect against cervical cancer.

Dr. Wu is also actively involved with investigating mechanisms of immune evasion of tumors, identifying new tumor-specific antigens and applying vaccine strategies to other cancer systems with characterized tumor-specific antigens.

Selected Publications

View all on PubMed

T.-C. Wu, F.G. Guarnieri, K.F. Staveley-O'Carroll, R.P. Viscidi, H.I. Levitsky, L. Hedrick, K.R. Cho, J.T. August, and D.M. Pardoll (1995) Engineering a novel pathway for MHC Class II Presentation of Antigens. Proc. Natl. Acad. Sci. 92: 11671-11675.

K.-Y. Lin, F. G. Guarnieri, K. F. Staveley-O'Carroll, H. I. Levitsky, J. T. August, D. M. Pardoll and T.-C. Wu (1996) Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Research 56:21-26.

C.-H. Chen, T.-L. Wang, C.-F. Hung, Y. Yang, H. Chen, R. A. Young, D. M. Pardoll and T.-C. Wu (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Research, 60:1035-1042.

W.-F. Cheng, C.-F. Hung, C.-Y. Chai, K.-F. Hsu, L. He, M. Ling and T.-C. Wu (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J. Clin. Invest. 108: 669-78.

T. W. Kim, C.-F. Hung, M. Ling, J. Juang, L. He, J. M. Hardwick, S. Kumar, and T.-C. Wu (2003) Enhancing DNA vaccine potency by co-administration of DNA encoding anti-apoptotic proteins. J. Clin. Invest. 112: 109-117.

C. L. Trimble, S. Peng, F. Kos, P. Gravitt, R. Viscidi, E. Sugar, D. Pardoll, T.-C. Wu (2009) A phase I trial of a HPV DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clinical Cancer Research 15(1):361-7.

K. H. Noh, B. W. Kim, K.-H. Song, H. Cho, Y.-H. Lee, J. H. Kim, H. Cho, J.-Y. Chung, J.-H. Kim, S. M. Hewitt, S.-Y. Seong, C.-P. Mao, T-C Wu* and T. W. Kim* (2012) Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J. Clin. Invest. 122: 4077-4093 * Co-corresponding authors.

T.H. Kang,CP Mao, SY Lee, A Chen, JH Lee, T.W. Kim, R Alvarez, RB Roden, D Pardoll, CF Hung, T.-C. Wu (2013). Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity. Cancer Research. 73(8);2493-2504.

L. Maldonado, JE Teague, MP Morrow, I. Jotova , T.-C. Wu, C. Wang, C. Desmarais, JD Boyer, B. Tycko, HS Robins, RA Clark, CL Trimble. (2014) Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 29 (6) 221.

Y Sun, S Peng, J Qiu, J Miao, B Yang, J Jeang, CF Hung, T.-C. Wu (2015) Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors. Gene Therapy advance online publication. 22 (7): 528-535​

Patents

DNA Vaccine Enhancement with MHC Class II Activators
Patent # US9085638 B2 | 07/21/2015

Methods for treating or preventing hyperproliferating diseases, e.g., cancer, are described. A method may comprise administering to a subject in need thereof a therapeutically effective amount of a nucleic acid encoding an MHC class I and/or II activator and optionally a nucleic acid encoding an antigen.

RNA Interference That Blocks Expression of Pro-Apoptotic Proteins Potentiates Immunity Induced by DNA and Transfected Dendritic Cell Vaccines
Patent # US9011866 B2 | 04/21/2015

An immunotherapeutic strategy is disclosed that combines antigen-encoding DNA vaccine compositions combined with siRNA directed to pro-apoptotic genes, primarily Bak and Bax, the products of which are known to lead to apoptotic death. Gene gun delivery (particle bombardment) of siRNA specific for Bak and/or Bax to antigen-expressing DCs prolongs the lives of such DCs and lead to enhanced generation of antigen-specific CD8+ T cell-mediated immune responses in vivo. Similarly, antigen-loaded DC's transfected with siRNA targeting Bak and/or Bax serve as improved immunogens and tumor immunotherapeutic agents.

Nucleic Acid Immunogenic Compositions Encoding Hsp-antigen Chimera
Patent # CA2388045 C | 02/11/2014

The invention provides chimeric nucleic acids encoding a chimeric polypeptide, constructs for expressing these polypeptides both in vitro and in vivo, isolated chimeric polypeptides, pharmaceutical compositions and methods of making and using these compositions. These compositions and methods are particularly useful for stimulating or enhancing the immunogenicity of a selected antigen or stimulating or enhancing a cellular immune response specific for that antigen. The nucleic acid of the invention comprises a first polypeptide domain comprising a carboxy terminal fragment of a heat shock protein (HSP), an Flt-3 ligand (FL), a cytoplasmic translocation domain of a Pseudomonas exotoxin A (ETA dII), or a granulocyte-macrophage-colony stimulating factor (GM-CSF) sequence, and a second polypeptide domain comprising an antigenic polypeptide.

Superior Molecular Vaccine Linking the Translocation Domain of a Bacterial Toxin to an Antigen
Patent # US8128922 B2 | 03/06/2012

Nucleic acids encoding a chimeric or fusion polypeptide which polypeptide comprises a first domain comprising a translocation polypeptide; and a second domain comprising at least one antigenic peptide are disclosed. The preferred translocation polypeptide is a bacterial toxin translocation polypeptide, such as domain II of Pseudomonas aeruginosa exotoxin A (ETA(dII)). Such nucleic acids, expression vectors thereof, and cells expressing these vectors are used as vaccine compositions in a method for enhancing an antigen specific immune response, a method of increasing the numbers of CD8+ CTLs specific for a selected desired antigen in a subject, or a method of inhibiting the growth of a tumor in a subject.

Molecular Vaccine Linking an Endoplasmic Reticulum Chaperone Polypeptide to an Antigen
Patent # US8007781 B2 | 08/30/2011

This invention provides compositions and methods for inducing and enhancing immune responses, such as antigen-specific cytotoxic T lymphocyte (CTL) responses, using chimeric molecules comprising endoplasmic reticulum chaperone polypeptides and antigenic peptides. In particular, the invention provides compositions and methods for enhancing immune responses induced by polypeptides made in vivo by administered nucleic acid, such as naked DNA or expression vectors, encoding the chimeric molecules. The invention provides a method of inhibiting the growth of a tumor in an individual. The invention also provides novel self-replicating RNA virus constructs for enhancing immune responses induced by chimeric polypeptides made in vivo.

Contact for Research Inquiries

The Johns Hopkins University
School of Medicine
Cancer Research Building II, Room 309
Baltimore, MD 21205 map

Activities & Honors

Honors

  • Outstanding Pathologist Award, International Association of Chinese Pathologists, 2017
  • Scientific Award, the Chinese American Medical Society, 2008
  • Outstanding Service Award, Society of Chinese Bioscientists in America (DC Chapter), 2000
  • Physician Scientist Award, the Passano Foundation, 1995
  • Binford-Dammin Award, Binford-Dammin Society of the International Academy of Pathology, 1994
  • The Delta Omega Honorary Society Alpha Chapter, School of Hygiene & Public Health, Johns Hopkins University, 1989
  • Frederik B. Bang Award, School of Hygiene and Public Health, Johns Hopkins University, 1987
  • Hampil Fellowship, School of Hygiene and Public Health, Johns Hopkins University, 1986 - 1988
  • Dr. Shu Yeh Scholarship, National Taiwan University, 1979

Memberships

  • Society for Clinical Investigation
  • Association of American Physicians

    Dr. Wu is an elected member of the Association of American Physicians.

  • Academician, Academia Sinica
  • Fellow, American Society for Microbiology

Professional Activities

  • Member, Research Committee of JHU Women’s Health Initiatives, 1997
  • President, Society of Chinese Bioscientists in America (DC Chapter), 1998 - 1999
  • Director, Vaccine Immunology Basic Research Center, 2002 - 2006
  • Director, Cervical Cancer Steering Committee, 2002
  • Member, Research Council of the Sidney Kimmel Comprehensive Cancer Center at Hopkins, 2002
  • President, International Association of Chinese Pathologists, 2003 - 2005
  • Associate Editor, Journal of Biomedical Science, 2005
  • President, Binford-Dammin Infectious Disease Society of the International Academy of Pathology, 2006 - 2007
  • Co-Executive Director, Society of Chinese Bioscientists in America (SCBA), 2010 - 2015
  • Associate Editor, Cell and Bioscience, 2010
Is this you? Edit Profile
back to top button