Lab
The Dawson lab studies molecular mechanisms of neurodegeneration of Parkinson’s disease, nitric oxide signaling and neuronal cell death and neuroprotective and neurorestorative strategies in neurodegenerative diseases, stroke and trauma.
{line break}
Parkinson’s disease is a common neurodegenerative disorder and the Dawson lab is studying the genetic basis of PD by investigating the mechanisms by which mutations in familial-linked genes cause PD, with hopes of identifying potential therapeutic targets for developing PD treatments. Current projects include the study of alpha-synuclein, LRRK2, parkin and PINK1.
{line break}
Nitric oxide is a major player in neuronal cell death and the Dawson team has discovered parthanatos, a caspase-independent programmed cell death pathway involving apoptosis inducing factor (AIF) downstream of NO and its major target poly (ADP-ribose) polymerase (PARP). The team now is further characterizing that pathway to identify targets of AIF and the roles of other cell death effectors with the hope of identifying new signaling pathways that might be amenable to therapeutic intervention. NO also activates the Ras-cell survival signaling pathway and the team is characterizing novel cell survival genes targeted by this pathway.
Lab Website: Udall Center for Parkinson’s Disease Research
Clinical Trials
Learn more about clinical trials at Johns Hopkins Medicine.
Selected Publications
View all on PubMed
Andrabi SA, Umanah GK, Chang C, Stevens DA, Karuppagounder SS, Gagné JP, Poirier GG, Dawson VL, Dawson TM. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10209-14. doi: 10.1073/pnas.1405158111. Epub 2014 Jul 1. PMID: 24987120
Sagal J, Zhan X, Xu J, Tilghman J, Karuppagounder SS, Chen L, Dawson VL, Dawson TM, Laterra J, Ying M. Proneural transcription factor atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med. 2014 Aug;3(8):888-98. doi: 10.5966/sctm.2013-0213. Epub 2014 Jun 5. PMID: 24904172
Chen YC, Umanah GK, Dephoure N, Andrabi SA, Gygi SP, Dawson TM, Dawson VL, Rutter J. Msp1/ATAD1 maintains mitochondrial function by facilitating the degradation of mislocalized tail-anchored proteins. EMBO J. 2014 Jul 17;33(14):1548-64. doi: 10.15252/embj.201487943. Epub 2014 May 19. PMID: 24843043 [PubMed - in process]
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS. The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease. Sci Rep. 2014 May 2;4:4874. doi: 10.1038/srep04874. PMID: 24786396 [PubMed - in process]
Chi Z, Byrne ST, Dolinko A, Harraz MM, Kim MS, Umanah G, Zhong J, Chen R, Zhang J, Xu J, Chen L, Pandey A, Dawson TM, Dawson VL. Botch is a γ-glutamyl cyclotransferase that deglycinates and antagonizes Notch. Cell Rep. 2014 May 8;7(3):681-8. doi: 10.1016/j.celrep.2014.03.048. Epub 2014 Apr 24. PMID: 24767995