Gabsang Lee, Ph.D.

Headshot of Gabsang Lee
  • Professor of Neurology

Expertise

Muscular Dystrophies, Peripheral Nerve Disorders

Research Interests

Neural crest cell biology; Peripheral nerves disease; Congenital Insensitivity of Pain and Anhidrosis; Familial Dysautonomia; Charcot-Marie-Tooth 1A; Skeletal muscle; Duchenne muscular dystrophy; Facioscapulohumeral muscular dystrophy ...read more

Background

Dr. Lee is currently Associate Professor in the Department of Neurology and Neuroscience at Johns Hopkins School of Medicine, where he continues his research on neural diseases and muscular dystrophies. His lab has established a novel methodology for direct derivation and prospective isolation of neurons, glia cells and skeletal muscle, from human pluripotent stem cells (hPSCs). Using these patient-specific hPSC model, they are studying disease mechanism, finding therapeutic compounds and developing cell therapy strategies.

...read more

Titles

  • Professor of Neurology
  • Professor of Neuroscience

Departments / Divisions

Centers & Institutes

Education

Degrees

  • B.S.; Seoul National University (Korea) (2000)
  • Ph.D.; Seoul National University (Korea) (2004)

Research & Publications

Research Summary

Human induced pluripotent stem cells (hiPSCs) now provide unprecedented opportunities for cell replacement approaches, disease modeling and drug discovery in patient-specific manner. Particularly Lee lab is focusing on neural lineage and skeletal muscle. Recently we have developed a new approach to control protein association/aggregation with light illumination, which allows us to stimulate multiple signaling pathways in stem cells, and to model pathogenic protein aggregation.

Skeletal muscle cells, in vitro myogenesis, and muscular dystrophies

We developed a new methodology to directly derive and prospectively isolate thousands of millions of expandable and fusion-competent myoblasts from hESCs/hiPSCs. Using multiple genetic reporter hESC lines, we are recapitulating step-wise human myogenesis, comprising pluripotent stem cells, somite cells, adipomyocytes and putative satellite stem cells. Further, hiPSCs of Duchenne muscular dystrophy and facioscapulohumeral muscular dystrophy are providing us unique opportunities to learn more about the devastating muscular dystrophies. Recently we also found a way to direct hESCs/hiPSCs into 'satellite' cells that have capabilities to engraft and repopulate in in vivo niche. 

Optical control of signaling pathways and aggregation of pathogenic proteins in human stem cells

Stem cell fate is largely determined by a complex cell signaling network. Our understanding and approaches to modulate such stem cell signaling networks is limited by the lack of precise control in single cells. In order to understand the operational principles of this network and physiological and pathological events, it is imperative to control signaling protein activities and subsequent cellular fates with great temporal and spatial precision. We have introduced light-sensing actuator modules into human pluripotent stem cells (hPSCs) to mimic fibroblast growth factor (FGF) signaling pathways via light illumination without using recombinant FGF protein. This method allowed us to maintain long-term stemness of the hPSCs. We are currently expanding this concept to the transforming growth factor beta (TGF beta) signaling pathway and the glial-derived neurotrophic factor (GDNF) signaling pathway, to control cellular fates and promote neuronal survival of hPSC-derived neurons. Furthermore, by utilizing the protein aggregation properties of light-sensing modules, we will accelerate the aggregation of pathogenic proteins, which will facilitate our understanding of the pathogenic mechanisms of proteinopathies. This project is expected to enhance our understanding of stem cell specification and utilization of stem cells in disease modeling, and ultimately lead to substantial advancements in modulation of transplanted cells in vivo.  

Neural crest and autonomic neurons

Previously, our group studied neural crest stem cells created from fibroblasts of patients with Familial Dysautonomia (FD), also known as Riley-Day syndrome, an inherited genetic condition that affects the peripheral nervous system. Although researchers know that FD is caused by a single point mutation in the IKBKAP gene, it is not clear how symptoms, like inability to feel pain and changes in temperature, manifest. We found that FD-specific neural crest cells expressed low levels of genes needed to make autonomous neurons—the ones needed for the “fight-or-flight” response. The FD-specific neural crest cells also moved around less than normal neural crest cells. Moving forward, as an effort to discover novel drugs to treat FD, we performed high throughput screening with a compound library using FD patient-derived neural crest stem cells to look for compounds that increased gene expression and protein levels of autonomous neuron developmental components. These studies set a paradigm of hiPSC studies, including developing differentiation protocol, disease modeling with patient hiPSCs and high throughput drug screening. Now we are advancing from neural crest to autonomic neurons and multicellular system. Our PHOX2b::GFP+ sympathetic neurons and their functional connection to target tissues (cardiac syncytia), which will lead us to investigate aberrant neuromodulation in patient-specific manner. 

Nociceptive/pruriceptive neurons and congenital pain disorders

How our body can sense million of different stimuli with limited numbers of sensory neurons? How our ‘sensors’ can perceive specific stimulus? The fate decision and physiological functions of individual sensory neurons should be choreographed by multiple molecular processes, which are closely related to the pathogenesis of many human pain disorders. Using iPSC lines of congenital sensory disorders, Congenital Insensitivity of Pain and Anhidrosis (CIPA) and Congenital Insensitivity of Pain (CIP), we are interrogating these questions with human TRPV1::GFP+ nociceptive and MRGPRX1::GFP+ pruriceptive neurons. 

Schwann cells and Charcot Marie Tooth 1A

Charcot-Marie-Tooth 1A (CMT1A) is one of the most common genetic diseases in peripheral nervous system. We have learned lots of information from animal models, but their genetics are yet exactly same as those of CMT1A patients. Recently, in the Lee lab, the CMT1A--hiPSC-derived Schwann cells have provided us a new insight on the disease mechanism that is shared with Schwann cells derived from CMT1A-PDG-hESCs and induced neural crest of CMT1A fibroblasts. Furthermore, we now can generate myelination-competent human Schwann cells for future cell replacement therapy for many PNS diseases.

Induced neural crest (iNC)

Despite of huge success of human iPSCs, there are several hurdles to overcome, such as arduously tedious time for its derivation/specification and cellular maturation issues. One potential solution is direct conversion technique. In 2014 we published a paper reporting direct conversion of human fibroblasts into induced neural crest (iNC) with single transcription factor (SOX10). As the SOX10-based iNC turns out multi-potent and behaves as their in vivo counterpart, it is a very interesting question if iNC can be ‘pattern-able’ during direct conversion process. On the other hand, we set out a chemical compound screening to replace SOX10, for generating chemically-induced neural crest (c-iNC). Our ‘genetic-factor free’ direct conversion will provide us unique opportunities to find mechanistic insight and potential malleability of c-iNC cell fates. 

Lab

Lab Website: Gabsang Lee Lab

Technology Expertise Keywords

Stem cells, pluripotent, neurons, Schwann cells, satellite cells, myoblasts, cortical neurons, organoid, Parkinson's, synuclein, optogenetics, neurofibromatosis, TDP-43, dementia, radiation, myelination, PAX7, direct conversion, MRGPRX1, motor neurons, ALS

Selected Publications

View all on PubMed

Oh YH, Cho GS, Li Z, Hong I, Zhu R, Kim MJ, Kim YJ, Tampakakis E, Tung L, Huganir R, Dong X, Kwon C, Lee G. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 2016 PMCID: PMC4996639

Choi IY, Lim HT, Estrellas K, Mula J, Cohen TV, Zhang Y, Donnelly CJ, Richard JP, Kim YJ, Kim HS, Kazuki Y, Oshimura M, Li HL, Hotta A, Rothstein J, Maragakis N, Wager K, Lee G. Concordant but varied phenotypes among patient-specific myoblasts of Duchenne muscular dystrophy revealed by a human iPSC-based model. Cell Reports 2016 15:2301-12. PMID: 27239027

Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim HT, Oh YH, Lannon B, Kim KJ, Bell S, Hur JK, Hwang WC, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. Comparison of three congruent patient-specific cell models for the modelling of a human genetic neurological disorder. Nature Biomedical Engineering 2019 3:571-582. PMCID: PMC6612317

Choi IY, Lim HT, A Huynh, J Schofield, HJ Cho, H Lee, P Andersen, JH Shin, WD Heo, S-H Hyun, YJ Kim, Y Oh, H Kim, Lee G. Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency. Biomaterials 2021 Feb; 269:120222. PMID: 32736809

Lee H, Lee JJ, Park NY, Dubey SK, Kim T, Ruan K, Lim SB, Park S-H, Ha S, Kovlyagina I, Kim K-T, Kim S, Oh Y, Kim H, Kang S-U, Song M-R, Lloyd TE, Maragakis NJ, Hong YB, Eoh H, Lee G. Multi-omic analysis of selectively vulnerable motor neuron subtypes implicates altered lipid metabolism in ALS. Nature Neuroscience 2021 Dec;24(12):1673-1685 PMID: 34782793

Contact for Research Inquiries

Email me Phone: 443-287-8631

Activities & Honors

Honors

  • Druckenmiller Fellowship (USA), New York Stem Cell Foundation, 2009 - 2011
  • Robertson Investigator, New York Stem Cell Foundation , 2011

Memberships

  • International Society of Stem Cell Research (ISSCR), 2010
    Member

Videos & Media

Recent News Articles and Media Coverage

Is this you? Edit Profile
back to top button