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In this second article in the quality improvement (QI) methods series, we discuss how data are best displayed and analyzed in QI 
projects while focusing on some similarities with and differences from traditional clinical research. We demonstrate why displaying 
data over time on a run or control chart is superior to using pre–post analysis for QI studies. We introduce several types of statistical 
process control charts for data commonly collected during QI programs and provide guidance on how to use the proper chart. Last, 
we present solutions to several common data challenges in QI projects.
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The first article in this quality improvement (QI) series intro-
duced essential QI methods, including the importance of itera-
tive testing cycles and plotting data over time [1]. In this second 
article, we discuss how data are best displayed and analyzed in 
QI projects. First, we show why displaying data over time on 
a run chart is superior to using a pre–post analysis. Second, 
we introduce several types of statistical process control charts 
for data commonly collected during QI projects and how they 
assist in measuring variability. Last, we briefly discuss common 
data challenges in QI projects and their potential solutions.

PROBLEMS WITH PRE–POST ANALYSIS

Time is a tremendously important variable when judging the 
success of a QI initiative. A pre–post analysis assumes a static 
time point at which the intervention was implemented, but the 
complex and dynamic nature of care systems and iterative QI 
interventions make this approach ill advised [2]. Interventions 
take time to adopt and scale; sustaining change is difficult. Care 
providers change from shift to shift and/or month to month. 
To illustrate the limitations of pre–post analysis for QI inter-
ventions, we share the example of an improvement team that is 
excited about early evidence of success in improving the reliabil-
ity of narrow-spectrum antibiotic use for children hospitalized 
with uncomplicated community-acquired pneumonia. The team 
describes their improvement intervention (a pocket-sized version 

of the Pediatric Infectious Diseases Society/Infectious Diseases 
Society of America pneumonia guidelines given to each resi-
dent), and the encouraging pre (40% narrow-spectrum antibiotic 
use) and post (60% narrow-spectrum antibiotic use) results. The 
team performed their work at a busy pediatric center, so they had 
sufficient numbers to meet statistical significance (P < .05) in χ2 
testing. However, for many reasons, the team is unwise to be con-
fident that their intervention led to improved performance. Each 
panel of Figure 1 displays a 40% preintervention and 60% postin-
tervention use of narrow-spectrum antibiotics, but the time-se-
ries data tell quite different versions of the story.

Biostatistical techniques, such as an interrupted time-series 
approach, are used for the analysis of longitudinal data [3]. These 
approaches confer some important advantages, particularly when 
a secular trend exists before the QI intervention and when a sin-
gle-packaged or bundled QI intervention (as opposed to series of 
small tests of change) is performed. However, during most improve-
ment projects, run charts and control charts are easier to use and a 
preferred way to gauge the ongoing success of interventions.

COMMON-CAUSE AND SPECIAL-CAUSE VARIATION

In any process, inherent outcome variability exists because of the 
variations at each step. For example, variations occur in the turn-
around time for laboratory results at a hospital because of small 
variations in the time to draw the blood sample, the time to send 
the sample to the laboratory, and the time to process the sample 
in the laboratory. This type is known as common-cause varia-
tion, defined as the variation expected by chance in a stable pro-
cess [4, 5]. Reacting to common-cause (or expected) variation is 
similar to a type I error, or inferring a significant difference when 
one does not truly exist. Alternatively, special-cause variation is 
variation that would not be expected by chance in a stable pro-
cess and is an indication of a changed or unstable process [4, 5].  
Examples of special-cause variation in laboratory turnaround 
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time would include a power outage that prolongs turnaround 
time or an improvement initiative that reduces turnaround time 
by changing the laboratory technician workflow. In both of these 
examples, the underlying process has changed fundamentally.

RUN AND CONTROL CHARTS

Run charts and other statistical process control (SPC) charts 
present data over time and enable the improvement team to 
identify quickly when variation that is unlikely due to chance 
(special-cause variation) has occurred. SPC charts (also called 
Shewhart charts) were developed by Walter Shewhart, a young 
engineer, physicist, and statistician working at Western Electric 
Company in the early 20th century [6, 7]. Run charts are simple 
displays of data over time with a median line that indicates the 
central tendency [2, 4, 8]. The most common run-chart rules for 
identifying special-cause variation are presented in Table 1 and 
displayed visually in the first article in this series [1].

Control charts have advantages over run charts in that they 
define expected variation in a process [4, 7, 9–11]. The first goal 
of many QI interventions is to reduce this variation [5]. The cen-
terline in SPC charts (Figure 2) is most commonly the mean of 
the data points (versus a median used in run charts). The upper 
and lower control limits (usually shown visually as dotted lines) 
are defined on the basis of the distribution of the data with each 
approximately 3 standard deviations, or σ, above and below the 
centerline. For normally distributed data, it might be helpful to 
think of a control chart as a Bell curve turned on its side, with 
the centerline at the peak of the Bell curve and the upper and 
lower control limits located 3σ out such that approximately 99% 

of the data points (if they come from the same distribution) 
would be expected to fall inside control limits. A properly anno-
tated run or control chart conveys a tremendous amount of data 
and can greatly improve a QI report, as discussed in more detail 
in the third article in this series [12].

CHOOSING THE CORRECT SPC CHART

The proper SPC chart is chosen on the basis of the type of data 
and their underlying distribution [4, 9]. A fixed or varying sub-
group size (eg, number of patients per week with the outcome 
of interest) influences which chart would be the best choice, 
although we have found that a fixed subgroup size is uncommon 
in healthcare QI projects. Table 2 lists the most common types 
of control charts used in healthcare QI reports, the types of data 
for each, and example scenarios in which this type of control 

Figure 1.  Four improvement stories shown over time. Each chart looks the same in a pre–post analysis. (a) Modest success at the project start, which 
increases with additional education, awareness, and reminders. (b) Ongoing, gradual improvement in the outcome, and the intervention was not associated 
with any change in the trajectory of narrow-spectrum antibiotic use. (c) Timing of the intervention was associated with a decrease in narrow-spectrum anti-
biotic use, but averaging the pre–post data falsely indicated improvement. (d) The team’s intervention was associated with a quick and large increase, but 
this success was not sustained when the team lost focus.

Table 1.  Most Commonly Used Run and Control Chart Rules for 
Identifying Likely Special-Cause Variation

Type of Chart Rule Definition

Run chart Shift Six consecutive points, all above or below the median line; 
points on line do not break the run but are not counted 
in the run

Trend Five or more consecutive points, with each going all up or 
all down

Control chart Control limits Any single data point outside of the 3-σ control limit

Run Eight consecutive points, all above or below the mean line; 
points on line do not break the run but are not counted 
in the run

Data source, Provost and Murray’s The Health Care Data Guide [4].
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chart might be used. In the case of control charts with a varying 
subgroup size (as in Figure 2), the control limits will vary on the 
basis of sample size, being more narrow with larger subgroups.

Table 1 lists the most commonly used run and control rules 
for identifying likely special-cause variation. It is important to 
remember that this variation might still be a result of chance or 
common-cause variation, akin to ~5% of studies of equivalent 
treatments that still produce a P value of .05 or less. Special-
cause variation that occurs closer to when a QI intervention 
is first implemented is more likely related to that QI interven-
tion. Special-cause variation that occurs several months after 
the intervention should be viewed more skeptically, because it 
might be a result of other contextual or extraneous factors. For 

instance, if a data point was special cause in the desired direc-
tion only during the week in which the QI team lead was on 
the consult service, it might not be right to conclude that the 
underlying process has changed and adjust the centerline. In 
that situation, more data points should be obtained.

COMMON CHALLENGES AND THEIR SOLUTIONS

The following common challenges arise with QI data, but some 
potential solutions exist.

Uncommon Outcomes

Uncommon outcomes, such as surgical site infections (SSIs), 
are a common issue for safety measures. It can be difficult to 
measure improvement, because many units of time will have 
no SSI events, and the lower control limit is almost certain to 
be 0. In such a case, g charts can be helpful. Using SSIs as an 
example for a g chart, the team would include event date of each 
SSI on the x-axis and the number of surgeries between each SSI 
on the y-axis. A t chart (Figure 3) is a special type of g chart 
in which time (usually a date) is on the x-axis; these charts are 
generally less preferable when event data are available because 
surgical procedure counts vary according to time of year and 
day of week.

Large Seasonal Variations

An additional challenge in infectious-disease–related QI proj-
ects is the large seasonal variations in the count of children with 

Figure 2.  Control chart showing adverse drug events resulting from antibiotic use per 1000 antibiotic doses. The first 10 points show modest variation that 
is common-cause variation, because it all occurs within the control limits. The 11th point shows special-cause variation, related in this case to an error in 
the default antibiotic choice in an order set in the electronic health record. Once this error was corrected, common-cause variation continued until a new 
antibiotic stewardship program reduced the rate of prescribing of antibiotics with higher rates of adverse drug events (ADEs). With 2 of 3 points outside of 
previous control limits, the improvement team readjusted the centerline downward. These count data are displayed on a u chart.

Table 2.  Types of Statistical Process Control Charts Commonly Used in 
Healthcare Quality Improvement

Type of 
Chart Type of Data Example Healthcare Scenario

p Proportion (attribute data 
classified as yes or no)

Percentage of all discharges from the hospital that 
were associated with a readmission within 
30 days

u Count (attribute data 
classified only as present)

Adverse drug events from antibiotics

XmR Continuous (variable data for 
an individual)

Vancomycin serum levels for 1 patient with oxacil-
lin-resistant Staphylococcus aureus meningitis

XbarS Continuous (variable data for 
groups/subgroups)

Minutes from arrival in emergency department to 
first antibiotic in febrile, neutropenic patients 
with a central venous catheter
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endemic diseases over the year. If a QI team has a goal to improve 
narrow-spectrum antibiotic prescribing for children hospitalized 
with pneumonia, it can be challenging—and arguably mislead-
ing—to give equal prominence on an SPC chart to July (in which 2 
children were admitted) and January (in which 45 were admitted). 
Fixed subgroup sizes (eg, 10 consecutive pneumonia admissions 
per point on the x-axis) helps with this issue, although it might be 
important to better show time of year in the figure or figure legend.

Too Few Baseline Data

Minimal preintervention data can be a substantial problem for 
both the team that judges the success of the project and the 
potential for publishing the data in the peer-reviewed literature. 
At least 10 and ideally 20 preintervention data points are needed 
to establish the average and baseline variations in performance 
[4, 10]. If fewer data points are available, the problem some-
times can be addressed by making the subgroups smaller (eg, 
using monthly instead of biweekly data), but there also can be 
a tension here between having the subgroups then be too small 
(subgroups of 10 help limit the “zig-zag” of small sample sizes).

CONCLUSIONS

Finally, and perhaps most importantly, SPC and run charts 
are used to their utmost value and validity during a QI proj-
ect. “Reverse-engineering” a retrospective study (or even 
retrospectively collected outcome data from a prospective 
educational intervention) is both inefficient QI and poten-
tially misleading. An SPC chart used optimally is both a sta-
tistical tool for understanding the performance of a process 
and a resource for informing the team of which interventions 
might be effective and worth implementing on a larger scale. 

A proper SPC chart can be an invaluable resource in driving 
great local QI programs, and it gives the greater scientific 
community a better understanding of effective QI interven-
tions that might be best spread or evaluated more rigorously 
in an experimental design [13].
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Figure 3.  t chart illustrating days between surgical site infections (SSIs) on the y-axis and dates of the SSIs on the y-axis. A substantial increase in days 
between was seen immediately after roll-out of a perioperative care bundle; the average number of days between SSIs went from <10 to >50 days.
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