Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 7 of 7 results for vascular biology

Show: 10 · 20 · 50

  1. 1
  • Daniel Nyhan Lab

    The Daniel Nyhan Lab studies vascular changes that accompany aging to determine the underlying causes and find ways to reverse the process. One goal of our research is to identify the factors that cause vascular stiffness. Our hope is that our work in vascular biology will lead to new ways to improve vascular compliance and thereby improve cardiovascular function and perioperative risk.

    Research Areas: hypertension, cardiovascular, vascular biology, vascular diseases

  • Dhananjay Vaidya Lab

    Research conducted in the Dhananjay Vaidya Lab focuses on the prevention of heart disease, with special emphasis on cardiometabolic risk factors, genetics in high-risk families, cardiovascular epidemiology, statistics and vascular biology. We also provide consultation on study design as well as plan and oversee data analyses for projects supported by the Center for Child and Community Health Research.

    Research Areas: heart disease, epidemiology, data analysis, cardiometabolic risk factors, statistics, study design, cardiovascular, genomics, vascular biology

    Principal Investigator

    Jay Vaidya, M.B.B.S., M.P.H., Ph.D.

    Department

    Medicine

  • Lewis Romer Lab

    Work in the Lewis Romer Lab focuses on the responses of vascular systems to disease and injury. Using cultured human endothelial cells and fibroblasts from mice that lack expression of the FAK- or Src-family kinases, we’re exploring several topics. These include the effect of inflammatory cytokine on cell adhesion to the extracellular matrix; the role of FAK signaling in inhibiting apoptosis; and the function of FAK- and Src-family kinases in cell-matrix interactions during adhesion and motility.

    Research Areas: microscopy, cellular biology, vascular biology, cardiovascular diseases

  • Mahendra Damarla Lab

    Work in the Mahendra Damarla Lab focuses primarily on the field of vascular biology. Much of our research involves exploring alternatives to mechanical ventilation as a therapy for acute lung injury. We investigate mitogen-activated protein kinase-activated protein kinase 2 as a method to mediate apoptosis during lung vascular permeability by regulating movement of cleaved caspase 3. We have also conducted research on the prevalence of confirmatory tests in patients hospitalized with congestive heart failure or chronic obstructive pulmonary disease (COPD).

    Research Areas: critical care medicine, acute lung injury, lung disease, COPD, vascular biology, hypoxia

    Principal Investigator

    Mahendra Damarla, M.D.

    Department

    Medicine

  • Nicholas Flavahan Lab

    The Nicholas Flavahan Lab primarily researches the cellular interactions and subcellular signaling pathways that control normal vascular function and regulate the initiation of vascular disease. We use biochemical and molecular analyses of cellular mediators and cell signaling mechanisms in cultured vascular cells, while also conducting physiological assessments and fluorescent microscopic imaging of signaling systems in isolated blood vessels. A major component of our research involves aterioles, tiny blood vessles that are responsible for controlling the peripheral resistance of the cardiovascular system, which help determine organ blood flow.

    Research Areas: biochemistry, Raynaud's phenomenon, vascular biology, vasospasms

  • Rachel Damico Lab

    Work in the Rachel Damico Lab explores topics within the fields of vascular biology and pulmonary medicine, with a focus on acute lung injury and apoptosis in lung diseases. Our studies have included examining idiopathic and scleroderma-associated pulmonary arterial hypertension, vascular receptor autoantibodies, and the link between inflammation and the Warburg phenomenon in patients with pulmonary arterial hypertension. We have also researched the inhibitory factor of macrophage migration and its governing of endothelial cell sensitivity to LPS-induced apoptosis.

    Research Areas: critical care medicine, acute lung injury, lung disease, vascular biology, apoptosis

    Principal Investigator

    Rachel Damico, M.D., Ph.D.

    Department

    Medicine

  • Richard Rivers Lab

    The Richard Rivers Lab researches vascular communication with a focus on microcirculation physiology. Our team seeks to determine how metabolic demands are passed between tissue and the vascular network as well as along the vascular network itself. Our goal is to better understand processes of diseases such as cancer and diabetes, which could lead to the development of more targeted drugs and treatment. We are also working to determine the role for inwardly rectifying potassium channels (Kir) 2.1 and 6.1 in signaling along the vessel wall as well as the role of gap junctions.

    Research Areas: cancer, potassium, diabetes, vascular biology, vascular, microcirculation

  1. 1