Skip Navigation

Find a Research Lab

Research Lab Results for translational research

Displaying 11 to 20 of 26 results
Results per page:
  • Hamid Rabb Lab

    Principal Investigator:
    Hamid Rabb, M.D.
    Medicine

    Dr. Rabb’s lab is involved in translational research aimed at understanding the molecular patho...genesis of kidney ischemia/reperfusion injury. The lab is interested in the development of novel treatments for kidney IRI. view more

    Research Areas: kidney diseases, kidney ischemia/reperfusion injuries, nephrology
  • IBD and Autoimmune Liver Diseases Laboratory

    Lab Website
    Principal Investigator:
    Xu Li, Ph.D.
    Medicine

    Investigators in the IBD and Autoimmune Liver Diseases Laboratory conduct basic and translation...al research in inflammatory bowel disease (IBD) and autoimmune liver diseases. One area of focus is discovering and developing biomarkers for diagnosing and prognosticating IBD and other autoimmune liver diseases (AILDs). We also are exploring the molecular pathogenesis of—and developing novel therapies for—IBD. In addition, we are working to understand the molecular reason why many IBD patients fail to respond to mainstay drug therapies—and to develop diagnostic assays that can predict non-responders before starting them on those therapies. These biomarker studies have led to our application for four U.S. and international patents. view more

    Research Areas: inflammatory bowel disease, Crohn’s disease, gastrointestinal system, colitis, autoimmune diseases, pathogenesis, celiac disease, liver diseases
  • Jean Kim Lab

    The Jean Kim Laboratory performs translational research in the
    area of chronic rhinosinusitis,... with a niche interest in the pathogenesis of hyperplastic nasal
    polyposis. Studies encompass clinical research to basic wet laboratory research in
    studying the underlying immune and autoimmune mediated mechanism of polyp growth and
    perpetuation of disease. Human cell and tissue culture models are used. Techniques in the
    laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry,
    immunohistochemistry, electron microscopy, gene array analysis, and other molecular
    approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study
    designs include prospective and retrospective analysis of patient outcomes and clinical
    biomarkers, as wells controlled clinical trials.
    view more

    Research Areas: nasal polyps, chronic rhinosinusitis, hyperplastic nasal polyposis
  • Kathryn Carson Lab

    Principal Investigator:
    Kathryn Carson, Sc.M.
    Medicine

    The Kathryn Carson Lab investigates ways to improve medical research, particularly in the areas... of brain and thyroid cancer, Alzheimer’s disease, atherosclerosis, hypertension, HIV and lupus. Our team seeks to help researchers optimize their studies through better study design, protocol and grant writing, data cleaning and analysis, and publication writing. We work with investigators from a wide range of departments through the Johns Hopkins Institute for Clinical and Translational Research. view more

    Research Areas: epidemiology, lupus, research methods, data analysis, cancer, hypertension, clinical trials, HIV, biostatistics, Alzheimer's disease
  • Kayode Williams Lab

    The Kayode Williams Lab conducts translational research on neuromodulation. We primarily examin...e the mechanisms and efficacy of spinal cord stimulation in treating neuropathic pain, peripheral neuropathies and peripheral vascular disease. Our clinical trials explore spinal cord stimulation in the treatment of painful diabetic neuropathy and the treatment of critical non-reconstructible critical leg ischemia. We also have a longstanding interest in the business of medicine and seek to enhance value propositions for hospitals and physician groups through more effective management of resources. view more

    Research Areas: pain management, neuropathic pain, translational research, vascular diseases
  • Konig Lab

    Principal Investigator:
    Maximilian Konig, M.D.
    Medicine

    The Konig Lab focuses on chimeric T cell- and antibody-based strategies for the treatment of au...toimmune rheumatic diseases and cancer. A primary goal of the translational research program is the development of antigen-specific and personalized immunotherapies for autoimmune diseases, with the intent to achieve sustained disease remission and functional cure. The lab further aims to establish precision T cell-targeting therapies for the treatment of various autoimmune diseases. Applying these tools to immuno-oncology, the lab utilizes cellular engineering strategies to augment the cytotoxic killing of solid cancers by the immune system. view more

    Research Areas: antigen-specific immunotherapy, myositis, autoimmunity, citrullination, rheumatology, antiphospholipid antibody syndrome, chimeric antigen receptor (CAR) T cell therapy, immuno-oncology, autoimmune rheumatic diseases, rheumatoid arthritis
  • Li Gao Lab

    Principal Investigator:
    Li Gao, M.D., Ph.D.
    Medicine

    The Li Gao Lab researches functional genomics, molecular genetics and epigenetics of complex ca...rdiopulmonary and allergic diseases, with a focus on translational research applying fundamental genetic insight into the clinical setting. Current research includes implementation of high-throughput technologies in the fields of genome-wide association studies (GWAS), massively parallel sequencing, gene expression analysis, epigenetic mapping and integrative genomics in ongoing research of complex lung diseases and allergic diseases including asthma, atopic dermatitis (AD), pulmonary arterial hypertension, COPD, sepsis and acute lung injury/ARDS; and epigenetic contributions to pulmonary arterial hypertension associated with systemic sclerosis. view more

    Research Areas: pulmonary arterial hypertension, molecular genetics, cardiopulmonary diseases, asthma, epigenetics, complex lung disease, allergies, genomics, COPD, atopic dermatitis
  • Michael Kornberg Lab

    Lab Website

    Our laboratory conducts basic and translational research aimed at better understanding the path...ogenesis of multiple sclerosis (MS) and the role of the immune system in CNS disease, particularly the processes that drive progressive disability such as neurodegeneration and remyelination failure. We currently have three parallel research programs: 1. Metabolism as a modulator of MS: We are studying how basic metabolic pathways regulate the immune system and how these pathways might be exploited to protect neurons and myelin-forming oligodendrocytes from injury. 2. Identifying pathways by which nitric oxide (NO) and other free radicals cause neuronal and axonal damage. Our lab is identifying specific signaling pathways initiated by NO and other free radicals that can be targeted by drugs to produce neuroprotection. 3. Modulating the innate immune system in MS: In collaboration with others at Johns Hopkins, we are studying ways to enhance the reparative functions of microglia while preventing maladaptive responses. This work has identified bryostatin-1 as a potential drug that may be re-purposed for this task. view more

    Research Areas: multiple sclerosis
  • Nicholas Rowan Lab

    Dr. Rowan is actively involved in both outcomes and translational research relating to chronic ...rhinosinusitis and endoscopic skull base surgery. He has a keen interest patient-reported quality of life outcomes as well as those that pertain to smell and taste. Dr. Rowan is also involved in sinus-related clinical trials, pursuing new medical therapies and technological advancements for the treatment of patients with chronic rhinosinusitis. view more

    Research Areas: clinical trials, smell and taste outcomes, Quality of life outcomes
  • O'Rourke Lab

    Lab Website
    Principal Investigator:
    Brian O'Rourke, Ph.D.
    Medicine

    The O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac ...cells in normal and diseased states.

    Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.

    We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole.

    Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.

    The motivation for all of the work is to understand
    • how the molecular details of the heart cell work together to maintain function and
    • how the synchronization of the parts can go wrong

    Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.

    Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University.
    view more

    Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells
  1. 1
  2. 2
  3. 3
Create lab profile
Edit lab profile
back to top button