Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for synthetic biology

Displaying 1 to 3 of 3 results
Results per page:
  • Goley Lab

    Lab Website
    Principal Investigator:
    Erin Goley, Ph.D.
    Biological Chemistry

    The Goley Lab is broadly interested in understanding cellular organization and dynamic reorganization, with particular focus on the roles of the cytoskeleton in these phenomena. We use cell biological, biochemical, genetic and structural approaches to dissect cytoskeletal processes with the aim of understanding how they work in molecular detail. Currently, we are focused on investigating the mechanisms underlying cytokinesis in bacteria. A deep understanding of cytoskeletal function in bacteria will aid in the identification of targets for novel antibiotic therapies and in efforts in synthetic biology.

    Research Areas: biological chemistry, cell biology, genomics, cytoskeleton
  • Inoue Lab

    Lab Website
    Principal Investigator:
    Takanari Inoue, Ph.D.
    Cell Biology

    Complexity in signaling networks is often derived from co-opting one set of molecules for multiple operations. Understanding how cells achieve such sophisticated processing using a finite set of molecules within a confined space--what we call the "signaling paradox"--is critical to biology and engineering as well as the emerging field of synthetic biology.

    In the Inoue Lab, we have recently developed a series of chemical-molecular tools that allow for inducible, quick-onset and specific perturbation of various signaling molecules. Using this novel technique in conjunction with fluorescence imaging, microfabricated devices, quantitative analysis and computational modeling, we are dissecting intricate signaling networks.

    In particular, we investigate positive-feedback mechanisms underlying the initiation of neutrophil chemotaxis (known as symmetry breaking), as well as spatio-temporally compartmentalized signaling of Ras and membrane lipids such as phosphoinositides. In parallel,... we also try to understand how cell morphology affects biochemical pathways inside cells. Ultimately, we will generate completely orthogonal machinery in cells to achieve existing, as well as novel, cellular functions. Our synthetic, multidisciplinary approach will elucidate the signaling paradox created by nature. view more

    Research Areas: biochemistry, cell biology, chemotaxis, cancer, signaling paradox, signaling networks, molecular biology, synthetic biology
  • Stuart C. Ray Lab

    Lab Website
    Principal Investigator:
    Stuart Ray, M.D.
    Medicine

    Chronic viral hepatitis (due to HBV and HCV) is a major cause of liver disease worldwide, and an increasing cause of death in persons living with HIV/AIDS. Our laboratory studies are aimed at better defining the host-pathogen interactions in these infections, with particular focus on humoral and cellular immune responses, viral evasion, inflammation, fibrosis progression, and drug resistance. We are engaged in synthetic biology approaches to rational vaccine development and understanding the limits on the extraordinary genetic variability of HCV.

    Research Areas: immunology, Hepatitis, AIDS, HIV, hepatitis B, hepatitis C, liver diseases, synthetic biology
  1. 1
Create lab profile
Edit lab profile
back to top button