Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 9 of 9 results for synapses

Show: 10 · 20 · 50

  1. 1
  • Brown Lab

    The Brown Lab is focused on the function of the cerebral cortex in the brain, which underlies our ability to interact with our environment through sensory perception and voluntary movement. Our research takes a bottom-up approach to understanding how the circuits of this massively interconnected network of neurons are functionally organized, and how dysfunction in these circuits contributes to neurodegenerative diseases like amyotrophic lateral sclerosis and neuropsychiatric disorders, including autism and schizophrenia. By combining electrophysiological and optogenetic approaches with anatomical and genetic techniques for identifying cell populations and pathways, the Brown Lab is defining the synaptic interactions among different classes of cortical neurons and determining how long-range and local inputs are integrated within cortical circuits. In amyotrophic lateral sclerosis, corticospinal and spinal motor neurons progressively degenerate. The Brown Lab is examining how abnormal ...activity within cortical circuits contributes to the selective degeneration of corticospinal motor neurons in an effort to identify new mechanisms for treating this disease. Abnormalities in the organization of cortical circuits and synapses have been identified in genetic and anatomical studies of neuropsychiatric disease. We are interested in the impact these abnormalities have on cortical processing and their contribution to the disordered cognition typical of autism and schizophrenia. view less

    Research Areas: autism, neurodegenerative diseases, brain, electrophysiology, ALS, schizophrenia, cerebral cortex, optogenetics

    Lab Website

    Principal Investigator

    Solange Brown, M.D., Ph.D.

    Department

    Neuroscience

  • Dwight Bergles Laboratory

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Dwight Bergles, Ph.D.

    Department

    Neuroscience

  • Glowatzki Lab

    Research in the Glowatzki Lab focuses on the auditory system, with a particular focus on synaptic transmission in the inner ear.

    Our lab is using dendritic patch clamp recordings to examine mechanisms of synaptic transmission at this first, critical synapse in the auditory pathway. With this technique, we can diagnose the molecular mechanisms of transmitter release at uniquely high resolution (this is the sole input to each afferent neuron), and relate them directly to the rich knowledge base of auditory signaling by single afferent neurons.

    We study pre- and post-synaptic mechanisms that determine auditory nerve fiber properties. This approach will help to study general principles of synaptic transmission and specifically to identify the molecular substrates for inherited auditory neuropathies and other cochlear dysfunctions.

    Research Areas: synaptic transmission, auditory synapses, inner ear, neurotransmitters, inherited auditory neuropathy, cochlear dysfunctions, otolaryngology, audiology, neuroscience, sound

  • Hey-Kyoung Lee Lab

    The Hey-Kyoung Lee Lab is interested in exploring the cellular and molecular changes that happen at synapses to allow memory storage. We use various techniques, including electrophysiological recording, biochemical and molecular analysis, and imaging, to understand the cellular and molecular changes that happen during synaptic plasticity.

    Currently, we are examining the molecular and cellular mechanisms of global homeostatic synaptic plasticity using sensory cortices as model systems. In particular, we found that loss of vision elicits global changes in excitatory synaptic transmission in the primary visual cortex. Vision loss also triggers specific synaptic changes in other primary sensory cortices, which we postulate underlies sensory compensation in the blind. One of our main research goals is to understand the mechanisms underlying such cross-modal synaptic plasticity.

    We are also interested in elucidating the events that occur in diseased brains. In collaboration with othe...r researchers, we are analyzing various mouse models of Alzheimer's disease, especially focusing on the possible alterations in synaptic plasticity mechanisms.
    view more

    Research Areas: biochemistry, synaptic plasticity, memory, imaging, vision, molecular biology, Alzheimer's disease

    Principal Investigator

    Hey-Kyoung Lee, Ph.D.

    Department

    Neuroscience

  • Jay Baraban Laboratory

    The Jay Baraban Laboratory studies key aspects of neuronal plasticity induced by environmental stimuli, including drugs. The ability of the microRNA system to regulate protein translation in the vicinity of synapses indicates it is well positioned to play a central role in regulating synaptic plasticity. Accordingly, we are studying how this system regulates synaptic function. In particular, we have identified the translin/trax RNAse complex as a key regulator of microRNA processing and are using genetically engineered mice that lack this complex to understand its role in neuronal function. For example, these mice display defects in responsiveness to cocaine and in certain forms of synaptic plasticity. We use a combination of behavioral and molecular approaches to conduct studies aimed at understanding how the microRNA system regulates these processes.

    Research Areas: synaptic plasticity, neuronal plasticity, drugs, RNA

    Principal Investigator

    Jay Baraban, M.D., Ph.D.

    Department

    Neuroscience

  • Laboratory of Richard L. Huganir

    The Laboratory of Richard L. Huganir is interested in the mechanisms that regulate synaptic transmission and synaptic plasticity. Our general approach is to study molecular and cellular mechanisms that regulate neurotransmitter receptors and synapse function. We are currently focusing our efforts on the mechanisms that underlie the regulation of the glutamate receptors, the major excitatory neurotransmitter receptors in the brain.

    Research Areas: synapses, neurotransmitters, cell biology, brain, molecular biology

    Lab Website

    Principal Investigator

    Richard Huganir, Ph.D.

    Department

    Neuroscience

  • Paul Worley Lab

    The Paul Worley Lab examines the molecular basis of learning and memory. In particular, we cloned a set of immediate early genes (IEGs) that are rapidly transcribed in neurons involved in information processing, and that are essential for long term memory. IEG proteins can directly modify synapses and provide insight into cellular mechanisms that support synapse-specific plasticity.

    Research Areas: synaptic plasticity, neurons, memory, learning, immediate early genes

    Lab Website

    Principal Investigator

    Paul Worley, M.D.

    Department

    Neuroscience

  • Roger Johns Lab

    Investigators in the Roger Johns Lab are examining the molecular mechanisms behind the onset and continuation of chronic pain, particularly neuropathic pain. This work has led to a better understanding of the vast network of molecules at neuronal synapses, particularly the postsynaptic density (PSD), which is key to the propagation of pain signals. We're working to develop new analgesics that interfere with the PSD protein interactions in an effort to better treat patients who suffer from chronic pain.

    Research Areas: neuropathic pain, asthma, neuronal synapses, postsynaptic density, chronic pain

  • Systems Neurobiology Laboratory

    The Systems neurobiology Laboratory is a group of laboratories that all study various aspects of neurobiology. These laboratories include: (1) computational neurobiology Laboratory: The goal of their research is to build bridges between brain levels from the biophysical properties of synapses to the function of neural systems. (2) computational Principles of Natural Sensory Processing: Research in this lab focuses on the computational principles of how the brain processes information. (3) Laboratory for Cognitive neuroscience: This laboratory studies the neural and genetic underpinnings of language and cognition. (4) Sloan-Swartz Center for Theoretical neurobiology: The goal of this laboratory is develop a theoretical infrastructure for modern experimental neurobiology. (5) Organization and development of visual cortex: This laboratory is studying the organization and function of neural circuits in the visual cortex to understand how specific neural components enable visual perception ...and to elucidate the basic neural mechanisms that underlie cortical function. (6) Neural mechanism of selective visual attention: This laboratory studies the neural mechanisms of selective visual attention at the level of the individual neuron and cortical circuit, and relates these findings to perception and conscious awareness. (7) Neural basis of vision: This laboratory studies how sensory signals in the brain become integrated to form neuronal representation of the objects that people see. view more

    Research Areas: cognition, systems biology, brain, vision, neuroscience, perception

  1. 1