Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 31 to 34 of 34 results for surgery

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • The Spinal Fusion Laboratory

    Five to 35 percent of spine fusionprocedures fail, even when using the gold standard treatment of grafting bone from the patient's own iliac crest. Fusion failure, otherwise known as pseudoarthrosis, is a major cause of failed back surgery syndrome (FBSS) and results in significant pain and disability, increasing the need for additional procedures and driving up health care costs. The ultimate goal of the Spinal Fusion Laboratory is to eliminate pseudoarthrosis by using animal models to study various strategies for improving spinal fusion outcomes, including delivery of various growth factors and biological agents; stem cell therapies and tissue engineering approaches.

    Research Areas: failed spine surgery, pseudoarthrosis, spine fusion

    Lab Website

    Principal Investigator

    Timothy Witham, M.D.

    Department

    Neurosurgery

  • URobotics

    URobotics is a research and education program that uses advanced technology to improve how urological diseases are diagnosed and treated. The URobotics lab’s main focus is creating robots that aid in real-time, image-guided interventions. This multidisciplinary team of urologists, radiologists and engineers has teamed up to revolutionize how surgeries are performed.

    Research Areas: robots, image-guided surgery, urology

    Lab Website

    Principal Investigator

    Dan Stoianovici, Ph.D.

    Department

    Urology

  • Vikram Chib Lab

    The goals of the Vikram Chib Lab are to understand how the nervous system organizes the control of movement and how incentives motivate our behaviors. To better understand neurobiological control, our researchers are seeking to understand how motivational cues drive our motor actions. We use an interdisciplinary approach that combines robotics with the fields of neuroscience and economics to examine neuroeconomics and decision making, motion and force control, haptics and motor learning, image-guided surgery and soft-tissue mechanics.

    Research Areas: soft-tissue mechanics, robotics, motor learning, neuroeconomics, movement, neurobiological control, neuroscience, image-guided surgery, economics, decision making, nervous system

  • Wojciech Zbijewski Lab

    Research in the Wojciech Zbijewski Lab — a component of the Imaging for Surgery, Therapy and Radiology (I-STAR) Lab — focuses on system modeling techniques to optimize the x-ray CT imaging chain. We’re specifically interested in: 1) using numerical models to improve the task-based optimization of image quality; 2) exploring advanced modeling of physics in statistical reconstruction; 3) using accelerated Monte Carlo methods in CT imaging; and 4) conducting experimental validation of such approaches and applying them to the development of new imaging methods.

    Research Areas: physics, image reconstruction, algorithms, imaging, x-ray

    Principal Investigator

    Wojciech Zbijewski, M.S., Ph.D.

    Department

    Biomedical Engineering

  1. 1
  2. 2
  3. 3
  4. 4