Skip Navigation

Find a Research Lab

Research Lab Results for stem cells

Displaying 1 to 10 of 17 results
Results per page:
  • Dara Kraitchman Laboratory

    Lab Website

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment... of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.
    view more

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy
  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiolog...y and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models. view more

    Research Areas: VEGF receptors image expression, SPECT/PET tracers, tracking stem cells in vivo, triple-negative breast cancer, image-guided combination therapy, MRI, noninvasive MR markers, cancer imaging
  • Elisseeff Lab

    Lab Website
    Principal Investigator:
    Jennifer Elisseeff, Ph.D.
    Ophthalmology

    The mission of the Elisseeff Lab is to engineer technologies to repair lost tissues. We aim to ...bridge academic research and technology discovery to treat patients and address clinically relevant challenges related to tissue engineering. To accomplish this goal we are developing and enabling materials, studying biomaterial structure-function relationships and investigating mechanisms of tissue development to practically rebuild tissues. The general approach of tissue engineering is to place cells on a biomaterial scaffold that is designed to provide the appropriate signals to promote tissue development and ultimately restore normal tissue function in vivo. Understanding mechanisms of cellular interactions (both cell-cell and cell-material) and tissue development on scaffolds is critical to advancement of the field, particularly in applications employing stem cells. Translation of technologies to tissue-specific sites and diseased environments is key to better design, understanding, and ultimately efficacy of tissue repair strategies. We desire to translate clinically practical strategies, in the form of biomaterials/medical devices, to guide and enhance the body's natural capacity for repair. To accomplish the interdisciplinary challenge of regenerative medicine research, we maintain a synergistic balance of basic and applied/translational research. view more

    Research Areas: stem cells, biomedical engineering, tissues
  • Erika Matunis Laboratory

    Lab Website
    Principal Investigator:
    Erika Matunis, Ph.D.
    Cell Biology

    The Erika Matunis Laboratory studies the stem cells that sustain spermatogenesis in the fruit f...ly Drosophila melanogaster to understand how signals from neighboring cells control stem cell renewal or differentiation. In the fruit fly testes, germ line stem cells attach to a cluster of non-dividing somatic cells called the hub. When a germ line stem cell divides, its daughter is pushed away from the hub and differentiates into a gonialblast. The germ line stem cells receive a signal from the hub that allows it to remain a stem cell, while the daughter displaced away from the hub loses the signal and differentiates. We have found key regulatory signals involved in this process. We use genetic and genomic approaches to identify more genes that define the germ line stem cells' fate. We are also investigating how spermatogonia reverse differentiation to become germ line stem cells again. view more

    Research Areas: stem cells, spermatogenesis, genomics, molecular biology
  • Frederick Anokye-Danso Lab

    The Frederick Anokye-Danso Lab investigates the biological pathways at work in the separation o...f human pluripotent stem cells into adipocytes and pancreatic beta cells. We focus in particular on determinant factors of obesity and metabolic dysfunction, such as the P72R polymorphism of p53. We also conduct research on the reprogramming of somatic cells into pluripotent stem cells using miRNAs. view more

    Research Areas: stem cells, obesity, metabolism, biology
  • Gabsang Lee Lab

    Principal Investigator:
    Gabsang Lee, Ph.D.
    Neurology

    Human induced pluripotent stem cells (hiPSCs) provide unprecedented opportunities for cell repl...acement approaches, disease modeling and drug discovery in a patient-specific manner. The Gabsang Lee Lab focuses on the neural crest lineage and skeletal muscle tissue, in terms of their fate-determination processes as well as relevant genetic disorders.

    Previously, we studied a human genetic disorder (familial dysautonomia, or FD) with hiPSCs and found that FD-specific neural crest cells have low levels of genes needed to make autonomous neurons--the ones needed for the "fight-or-flight" response. In an effort to discover novel drugs, we performed high-throughput screening with a compound library using FD patient-derived neural crest cells.

    We recently established a direct conversion methodology, turning patient fibroblasts into "induced neural crest (iNC)" that also exhibit disease-related phenotypes, just as the FD-hiPSC-derived neural crest. We're extending our research to the neural crest's neighboring cells, somite. Using multiple genetic reporter systems, we identified sufficient cues for directing hiPSCs into somite stage, followed by skeletal muscle lineages. This novel approach can straightforwardly apply to muscular dystrophies, resulting in expandable myoblasts in a patient-specific manner.
    view more

    Research Areas: stem cells, human-induced pluripotent stem cells, genomics, drugs, muscular dystrophy, familial dysautonomia
  • Green Group

    Lab Website

    The Green Group is the biomaterials and drug delivery laboratory in the Biomedical Engineering ...Department at the Johns Hopkins University School of Medicine. Our broad research interests are in cellular engineering and in nanobiotechnology. We are particularly interested in biomaterials, controlled drug delivery, stem cells, gene therapy, and immunobioengineering. We are working on the chemistry/biology/engineering interface to answer fundamental scientific questions and create innovative technologies and therapeutics that can directly benefit human health. view more

    Research Areas: nanobiotechnology, stem cells, biomedical engineering, drugs, immunobioengineering
  • Greider Lab

    Lab Website

    The Greider lab uses biochemistry to study telomerase and cellular and organismal consequences ...of telomere dysfunction. Telomeres protect chromosome ends from being recognized as DNA damage and chromosomal rearrangements. Conventional replication leads to telomere shortening, but telomere length is maintained by the enzyme telomerase. Telomerase is required for cells that undergo many rounds of divisions, especially tumor cells and some stem cells. The lab has generated telomerase null mice that are viable and show progressive telomere shortening for up to six generations. In the later generations, when telomeres are short, cells die via apoptosis or senescence. Crosses of these telomerase null mice to other tumor prone mice show that tumor formation can be greatly reduced by short telomeres. The lab also is using the telomerase null mice to explore the essential role of telomerase stem cell viability. Telomerase mutations cause autosomal dominant dyskeratosis congenita. People with this disease die of bone marrow failure, likely due to stem cell loss. The lab has developed a mouse model to study this disease. Future work in the lab will focus on identifying genes that induce DNA damage in response to short telomeres, identifying how telomeres are processed and how telomere elongation is regulated. view more

    Research Areas: telomerase, biochemistry, stem cells, cell biology, DNA
  • Jerry Spivak Lab

    Principal Investigator:
    Jerry Spivak, M.D.
    Medicine

    Research in the Jerry Spivak Lab focuses on chronic myeloproliferative disorders, particularly ...their molecular mechanisms and methods for distinguishing them diagnostically and interventionally. By analyzing gene expression in polycythemia vera stem cells, we have learned that patients with polycythemia vera can be differentiated from those with erythrocytosis and can be diagnosed as having either aggressive or slow-growing disease. We are also studying the roles played by specific molecular markers in the pathogenesis and diagnosis of polycythemia vera. view more

    Research Areas: stem cells, pathogenesis, polycythemia vera, myeloproliferative disorders
  • Kendall Moseley Lab

    Principal Investigator:
    Kendall Moseley, M.D.
    Medicine

    Research in the Kendall Moseley Lab is focused on the interplay between type 2 diabetes, aging ...and osteoporosis. We also study the function of bone stem cells in the regulation of bone remodeling. view more

    Research Areas: type 2 diabetes, osteoporosis, stem cells, aging
  1. 1
  2. 2
Create lab profile
Edit lab profile
back to top button