Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 25 results for stem cells

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Carlo Colantuoni Laboratory

    Dr. Colantuoni and his colleagues explore human brain development and molecular mechanisms that give rise to risk for complex brain disease. His team uses genomic technologies to examine human brain tissue as well as stem models and vast public data resources.

    Research Areas: stem cells, brain tissue, brain development, genomics

    Principal Investigator

    Carlo Colantuoni, Ph.D.

    Department

    Neurology
    Neuroscience

  • Chulan Kwon Laboratory

    The C. Kwon Lab studies the cellular and molecular mechanisms governing heart generation and regeneration.

    The limited regenerative capacity of the heart is a major factor in morbidity and mortality rates: Heart malformation is the most frequent form of human birth defects, and cardiovascular disease is the leading cause of death worldwide. Cardiovascular progenitor cells hold tremendous therapeutic potential due to their unique ability to expand and differentiate into various heart cell types.

    Our laboratory seeks to understand the fundamental biology and regenerative potential of multi-potent cardiac progenitor cells – building blocks used to form the heart during fetal development — by deciphering the molecular and cellular mechanisms that control their induction, maintenance, and differentiation. We are also interested in elucidating the maturation event of heart muscle cells, an essential process to generate adult cardiomyocytes, which occurs after terminal differentiation ...of the progenitor cells. We believe this knowledge will contribute to our understanding of congenital and adult heart disease and be instrumental for stem cell-based heart regeneration.

    We have developed several novel approaches to deconstruct the mechanisms, including the use of animal models and pluripotent stem cell systems. We expect this knowledge will help us better understand heart disease and will be instrumental for stem-cell-based disease modeling and interventions for of heart repair.

    Dr. Chulan Kwon is an assistant professor of medicine at the Johns Hopkins University Heart and Vascular Institute.
    view more

    Research Areas: stem cells, cell biology, heart regeneration, congenital heart disease, cardiovascular, molecular biology, cardiac cells

    Lab Website

    Principal Investigator

    Chulan Kwon, M.S., Ph.D.

    Department

    Medicine

  • Dara Kraitchman Laboratory

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy

  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models.

    Research Areas: VEGF receptors image expression, SPECT/PET tracers, tracking stem cells in vivo, triple-negative breast cancer, image-guided combination therapy, MRI, noninvasive MR markers, cancer imaging

  • Eberhart, Rodriguez and Raabe Lab

    Utilizing a combination of tissue-based, cell-based, and molecular approaches, our research goals focus on abnormal telomere biology as it relates to cancer initiation and tumor progression, with a particular interest in the Alternative Lengthening of Telomeres (ALT) phenotype. In addition, our laboratories focus on cancer biomarker discovery and validation with the ultimate aim to utilize these novel tissue-based biomarkers to improve individualized prevention, detection, and treatment strategies.

    Research Areas: stem cells, eye tumor, tumor cell metastasis, brain tumor

    Lab Website

    Principal Investigator

    Charles Eberhart, M.D., Ph.D.

    Department

    Pathology

  • Elisseeff Lab

    The mission of the Elisseeff Lab is to engineer technologies to repair lost tissues. We aim to bridge academic research and technology discovery to treat patients and address clinically relevant challenges related to tissue engineering. To accomplish this goal we are developing and enabling materials, studying biomaterial structure-function relationships and investigating mechanisms of tissue development to practically rebuild tissues. The general approach of tissue engineering is to place cells on a biomaterial scaffold that is designed to provide the appropriate signals to promote tissue development and ultimately restore normal tissue function in vivo. Understanding mechanisms of cellular interactions (both cell-cell and cell-material) and tissue development on scaffolds is critical to advancement of the field, particularly in applications employing stem cells. Translation of technologies to tissue-specific sites and diseased environments is key to better design, understanding, and... ultimately efficacy of tissue repair strategies. We desire to translate clinically practical strategies, in the form of biomaterials/medical devices, to guide and enhance the body's natural capacity for repair. To accomplish the interdisciplinary challenge of regenerative medicine research, we maintain a synergistic balance of basic and applied/translational research. view more

    Research Areas: stem cells, biomedical engineering, tissues

    Lab Website

    Principal Investigator

    Jennifer Elisseeff, Ph.D.

    Department

    Ophthalmology

  • Erika Matunis Laboratory

    The Erika Matunis Laboratory studies the stem cells that sustain spermatogenesis in the fruit fly Drosophila melanogaster to understand how signals from neighboring cells control stem cell renewal or differentiation. In the fruit fly testes, germ line stem cells attach to a cluster of non-dividing somatic cells called the hub. When a germ line stem cell divides, its daughter is pushed away from the hub and differentiates into a gonialblast. The germ line stem cells receive a signal from the hub that allows it to remain a stem cell, while the daughter displaced away from the hub loses the signal and differentiates. We have found key regulatory signals involved in this process. We use genetic and genomic approaches to identify more genes that define the germ line stem cells' fate. We are also investigating how spermatogonia reverse differentiation to become germ line stem cells again.

    Research Areas: stem cells, spermatogenesis, genomics, molecular biology

    Lab Website

    Principal Investigator

    Erika Matunis, Ph.D.

    Department

    Cell Biology

  • Erwin Lab

    Schizophrenia, autism and other neurological disorders are caused by a complex interaction between inherited genetic risk and environmental experiences. The overarching goal of the group are to reveal molecular mechanisms of gene by environment interactions related to altered neural development and liability for brain disorders. Our research uses a hybrid of human stem cell models, post-mortem tissue and computational approaches to interrogate the contribution of epigenetic regulation and somatic mosaicism to brain diseases. Our previous work has demonstrated that the human brain exhibits extensive genetic variability between neurons within the same brain, termed "somatic mosaicism" due to mobile DNA elements which mediate large somatic DNA copy number variants. We study environment-responsive mechanisms and consequences for somatic mosaicism and are discovering the landscape of somatic mosaicism in the brain. We also study the epigenetic regulation of cell specification and activity-d...ependent states within the human dorsal lateral prefrontal cortex and striatum. view more

    Research Areas: autism, Cellular and Molecular Neuroscience, stem cells, Developmental Neuroscience, Neurobiology of Disease, Induced Pluripotent Stem Cell Models, Organoids, schizophrenia, genomics, Dystonia, Epigenomics

    Lab Website

    Principal Investigator

    Jennifer Erwin, Ph.D.

    Department

    Neurology

  • Frederick Anokye-Danso Lab

    The Frederick Anokye-Danso Lab investigates the biological pathways at work in the separation of human pluripotent stem cells into adipocytes and pancreatic beta cells. We focus in particular on determinant factors of obesity and metabolic dysfunction, such as the P72R polymorphism of p53. We also conduct research on the reprogramming of somatic cells into pluripotent stem cells using miRNAs.

    Research Areas: stem cells, obesity, metabolism, biology

    Principal Investigator

    Frederick Anokye-Danso, M.Sc., Ph.D.

    Department

    Medicine

  • Gabsang Lee Lab

    Human induced pluripotent stem cells (hiPSCs) provide unprecedented opportunities for cell replacement approaches, disease modeling and drug discovery in a patient-specific manner. The Gabsang Lee Lab focuses on the neural crest lineage and skeletal muscle tissue, in terms of their fate-determination processes as well as relevant genetic disorders.

    Previously, we studied a human genetic disorder (familial dysautonomia, or FD) with hiPSCs and found that FD-specific neural crest cells have low levels of genes needed to make autonomous neurons--the ones needed for the "fight-or-flight" response. In an effort to discover novel drugs, we performed high-throughput screening with a compound library using FD patient-derived neural crest cells.

    We recently established a direct conversion methodology, turning patient fibroblasts into "induced neural crest (iNC)" that also exhibit disease-related phenotypes, just as the FD-hiPSC-derived neural crest. We're extending our research to the ne...ural crest's neighboring cells, somite. Using multiple genetic reporter systems, we identified sufficient cues for directing hiPSCs into somite stage, followed by skeletal muscle lineages. This novel approach can straightforwardly apply to muscular dystrophies, resulting in expandable myoblasts in a patient-specific manner.
    view more

    Research Areas: stem cells, human-induced pluripotent stem cells, genomics, drugs, muscular dystrophy, familial dysautonomia

    Principal Investigator

    Gabsang Lee, Ph.D.

    Department

    Neurology

  1. 1
  2. 2
  3. 3