Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 2 of 2 results for selective vulnerability

Show: 10 · 20 · 50

  1. 1
  • Lee Martin Laboratory

    In the Lee Martin Laboratory, we are testing the hypothesis that selective vulnerability--the phenomenon in which only certain groups of neurons degenerate in adult onset neurological disorders like amyotrophic lateral sclerosis and Alzheimer's disease--is dictated by brain regional connectivity, mitochondrial function and oxidative stress. We believe it is mediated by excitotoxic cell death resulting from abnormalities in excitatory glutamatergic signal transduction pathways, including glutamate transporters and glutamate receptors as well as their downstream intracellular signaling molecules.

    We are also investigating the contribution of neuronal/glial apoptosis and necrosis as cell death pathways in animal (including transgenic mice) models of acute and progressive neurodegeneration. We use a variety of anatomical and molecular neurobiological approaches, including neuronal tract-tracing techniques, immunocytochemistry, immunoblotting, antipeptide antibody production, transmissi...on electron microscopy and DNA analysis to determine the precise regional and cellular vulnerabilities and the synaptic and molecular mechanisms that result in selective neuronal degeneration.
    view more

    Research Areas: ALS, neurodegeneration, selective vulnerability, cell death, Alzheimer's disease

    Lab Website

    Principal Investigator

    Lee Martin, Ph.D.

    Department

    Pathology

  • The Sun Laboratory

    The nervous system has extremely complex RNA processing regulation. Dysfunction of RNA metabolism has emerged to play crucial roles in multiple neurological diseases. Mutations and pathologies of several RNA-binding proteins are found to be associated with neurodegeneration in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An alternative RNA-mediated toxicity arises from microsatellite repeat instability in the human genome. The expanded repeat-containing RNAs could potentially induce neuron toxicity by disrupting protein and RNA homeostasis through various mechanisms.

    The Sun Lab is interested in deciphering the RNA processing pathways altered by the ALS-causative mutants to uncover the mechanisms of toxicity and molecular basis of cell type-selective vulnerability. Another major focus of the group is to identify small molecule and genetic inhibitors of neuron toxic factors using various high-throughput screening platforms. Finally, we are also highly i...nterested in developing novel CRISPR technique-based therapeutic strategies. We seek to translate the mechanistic findings at molecular level to therapeutic target development to advance treatment options against neurodegenerative diseases. view more

    Research Areas: ALS, neurodegeneration, RNA

    Lab Website

    Principal Investigator

    Shuying Sun, Ph.D.

    Department

    Pathology

  1. 1