Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 20 results for radiology

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Cardiology Bioengineering Laboratory

    The Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.

    Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.

    Active projects include
    • Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
    • Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
    • MRI-guided radiofrequency ablation of canine atrial fibrillation, and ...diagnosis and intervention for arrhythmias
    • Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation

    Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
    professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
    view less

    Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling

    Lab Website

    Principal Investigator

    Henry Halperin, M.D.

    Department

    Medicine

  • Dara Kraitchman Laboratory

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy

  • Dmitri Artemov Lab

    The Artemov lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab focuses on 1) Use of advanced dynamic contrast enhanced-MRI and activated dual-contrast MRI to perform image-guided combination therapy of triple negative breast cancer and to assess therapeutic response. 2) Development of noninvasive MR markers of cell viability based on a dual-contrast technique that enables simultaneous tracking and monitoring of viability of transplanted stems cells in vivo. 3) Development of Tc-99m and Ga-68 angiogenic SPECT/PET tracers to image expression of VEGF receptors that are involved in tumor angiogenesis and can be important therapeutic targets. 4) Development of the concept of “click therapy” that combines advantages of multi-component targeting, bio-orthogonal conjugation and image guidance and preclinical validation in breast and prostate cancer models.

    Research Areas: VEGF receptors image expression, SPECT/PET tracers, tracking stem cells in vivo, triple-negative breast cancer, image-guided combination therapy, MRI, noninvasive MR markers, cancer imaging

  • Healthy Brain Program

    The Brain Health Program is a multidisciplinary team of faculty from the departments of neurology, psychiatry, epidemiology, and radiology lead by Leah Rubin and Jennifer Coughlin. In the hope of revealing new directions for therapies, the group studies molecular biomarkers identified from tissue and brain imaging that are associated with memory problems related to HIV infection, aging, dementia, mental illness and traumatic brain injury. The team seeks to advance policies and practices to optimize brain health in vulnerable populations while destigmatizing these brain disorders.

    Current and future projects include research on: the roles of the stress response, glucocorticoids, and inflammation in conditions that affect memory and the related factors that make people protected or or vulnerable to memory decline; new mobile apps that use iPads to improve our detection of memory deficits; clinical trials looking at short-term effects of low dose hydrocortisone and randomized to 28 day...s of treatment; imaging brain injury and repair in NFL players to guide players and the game; and the role of inflammation in memory deterioration in healthy aging, patients with HIV, and other neurodegenerative conditions. view more

    Research Areas: HIV infection, mental illness, aging, traumatic brain injury, dementia

  • Imaging for Surgery, Therapy and Radiology (I-STAR) Lab

    The Imaging for Surgery, Therapy and Radiology (I-STAR) Lab is a collaborative research endeavor based in the Department of Biomedical Engineering at Johns Hopkins University. Research areas include: (1) Imaging physics: Mathematical models of imaging performance in advanced modalities, including cone-beam CT and spectral/dual-energy imaging, (2) 3-D image reconstruction: Advanced 3-D image reconstruction based on statistical models of the imaging chain and prior information, (3) Novel imaging systems: Preclinical prototypes translated from the laboratory to first application in diagnostic and interventional procedures, and(4) Image-guided interventions and diagnostic radiology: High-precision interventional guidance systems (for surgery, interventional radiology, and radiation therapy) and new technologies for high-quality diagnostic imaging.

    Research Areas: 3-D, physics, imaging, radiology, surgery, CT

  • Interventional Cardiology Research Group

    Our group is interested in a broad array of clinical and translational investigations spanning the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures. We are comprised of a core group of faculty and dedicated research nurses as well as fellows, residents, and students. Projects range from investigator-initiated single-center observational studies to industry-sponsored multicenter phase 3 randomized controlled trials. We have established a database of all patients who have undergone TAVR at Johns Hopkins, which is providing the basis for several retrospective analyses and will serve as the foundation for future studies of TAVR. We are also engaged in collaborative projects with other groups from the Department of Medicine and other Departments including Cardiac Surgery, Anesthesiology, Radiology, Psychiatry, and Biomedical... Engineering. Members of our group are actively involved with the Johns Hopkins Center for Bioengineering Innovation and Design (CBID) in the development of novel minimally-invasive cardiovascular devices. view more

    Research Areas: coronary CT angiography, PCI, bioprosthetic leaflet thrombosis, myocardial regeneration, TAVR

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • J. Webster Stayman Lab

    The J. Webster Stayman Lab studies both emission tomography and transmission tomography (CT, tomosynthesis and cone-beam CT). Our research activities relate to 3-D reconstruction, including model-based statistical / iterative reconstruction, regularization methods and modeling of imaging systems. We are developing a generalized framework for penalized likelihood (PL) reconstruction combining statistical models of noise and image formation with incorporation of prior information, including patient-specific prior images, atlases and models of components / devices known to be in the field of view. Our research includes algorithm development and physical experimentation for imaging system design and optimization.

    Research Areas: 3-D, imaging, emission tomography, transmission tomography, radiology, computed tomography

  • James Pekar Lab

    How do we see, hear, and think? More specifically, how can we study living people to understand how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make "movies" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology.

    Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techni...ques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
    view more

    Research Areas: magnetic resonance, functional magnetic resonance imaging, radiology

  • Jeff Bulte Lab

    The clinical development of novel immune and stem cell therapies calls for suitable methods that can follow the fate of cells non-invasively in humans at high resolution. The Bulte Lab has pioneered methods to label cells magnetically (using tiny superparamagnetic iron oxide nanoparticles) in order to make them visible by MR imaging.

    While the lab is doing basic bench-type research, there is a strong interaction with the clinical interventional radiology and oncology groups in order to bring the methodologies into the clinic.

    Research Areas: immunology, stem cells, cancer, MRI, interventional radiology

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging

  1. 1
  2. 2