Research Lab Results for proteins
-
Advanced Optics Lab
Lab WebsiteThe Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, ...to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.
Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering
Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins. view more -
Alex Kolodkin Laboratory
Lab WebsiteResearch in the Alex Kolodkin Laboratory is focused on understanding how neuronal connectivity ...is established during development. Our work investigates the function of extrinsic guidance cues and their receptors on axonal guidance, dendritic morphology and synapse formation and function. We have investigated how neural circuits are formed and maintained through the action of guidance cues that include semaphorin proteins, their classical plexin and neuropilin receptors, and also novel receptors. We employ a cross-phylogenetic approach, using both invertebrate and vertebrate model systems, to understand how guidance cues regulate neuronal pathfinding, morphology and synaptogenesis. We also seek to understand how these signals are transduced to cytosolic effectors. Though broad in scope, our interrogation of the roles played by semaphorin guidance cues provides insight into the regulation of neural circuit assembly and function. Our current work includes a relatively new interest in understanding the origins of laminar organization in the central nervous system. view more
Research Areas: central nervous system, neural circuits, neurodevelopment, neuronal connectivity, laminar organization -
Anne Murphy Laboratory
Anne Murphy’s laboratory studies cardiomyopathy and key proteins that are part of the contracti...le apparatus. The team is looking at how modifications to these proteins might affect various diseases and heart failure. She also investigates the role of genetics in pediatric heart failure associated with acute heart failure, which is sometimes attributed to myocarditis. Her laboratory has received grants from the American Heart Association, the National Institutes of Health and the Children’s Cardiomyopathy Foundation. Murphy received the Rowe Award for Cardiology Research from the Society for Pediatric Research and other awards. Her research on the molecular basis of myocardial stunning was named one of the top 10 research achievements for 1999 by the American Heart Association. view more
Research Areas: pediatric cardiology, cardiomyopathy -
Center for Epithelial Disorders
The Johns Hopkins Center for Epithelial Disorders focuses on research into the physiology and p...athophysiology of epithelial cells (cells that line the cavities and interior surfaces of the body) of the gastrointestinal (GI) tract, liver, pancreas and kidney. Specifically, the center’s research seeks to:
Research Areas: gastroenterology, epithelial cells
-Understand the mechanisms regulating the activity of transport proteins (including channels) of epithelial cells
Characterize the mechanisms by which polarity of epithelial cells are maintained
-Investigate the mechanisms controlling transcription of epithelial-specific genes
Understand the pathophysiological basis of GI and renal diseases that involve the preceding three components
-The center also provides a framework for training fellows in gastroenterology and hepatology to become independent investigators.
The center is funded primarily through individual investigator-initiated extramural research grant support from the National Institutes of Health (NIH) as well as multi-investigator grants including RO1, PO1, UO1 and R24. view more -
Center for Research on Cardiac Intermediate Filaments
Lab WebsiteThe CRCIF was established to foster collaborative efforts aimed at elucidating the role of inte...rmediate filaments (IFs) in the heart. Intermediate filaments constitute a class of cytoskeletal proteins in metazoan cells, however, different from actin microfilaments and tubulin microtubules, their function in cardiac cells is poorly understood. Unique from the other two components of the cytoskeleton, IFs are formed by cell type-specific proteins. Desmin is the main component of the IFs in the cardiac myocytes. We measured the consistent induction of desmin post-translational modifications (PTMs, such as phosphorylation, etc.) in various clinical and experimental models of heart failure. Therefore, one of our main focuses is to determine the contribution of desmin PTMs to the development of heart failure in different animal and clinical models.
Research Areas: heart failure, intermediate filaments
Active Projects:
• Quantification of desmin PTM-forms in different forms of heart failure at the peptide level using mass spectrometry
• Functional assessment of the role of desmin PTMs in heart failure development using single site mutagenesis and biophysical methods
• Molecular characterization of desmin preamyloid oligomers using mass spectrometry, in vitro and in vivo imaging
• Assessment of the diagnostic and pharmacological value of desmin PTMs in heart failure development view more -
David Graham Lab
The David Graham Lab studies the consequences of HIV interactions with the immune system, the r...esulting pathogenesis and how to sabotage these interactions. We apply advanced technologies like mass spectrometry to dissect processes at the molecular level. We are also actively involved in cardiovascular research and studies the ways proteins are organized into functional units in different cell types of the heart.
Research Areas: immunology, mass spectrometry, HIV, cardiovascular, SIV, pathogenesis
Major projects in our lab are organized into three major areas: (1) H/SIV pathogenesis and neuropathogenesis, (2) Cardiovascular disease, and (3) High technology development
view more -
Elizabeth M. Jaffee, M.D.
Lab WebsiteCurrent projects include:
Research Areas: immunology, cancer, anti-cancer drugs
The evaluation of mechanisms of immune tolerance to cancer in m...ouse models of breast and pancreatic cancer. We have characterized the HER-2/neu transgenic mouse model of spontaneous mammary tumors.
This model demonstrates immune tolerance to the HER-2/neu gene product. This model is being used to better understand the mechanisms of tolerance to tumor. In addition, this model is being used to develop vaccine strategies that can overcome this tolerance and induce immunity potent enough to prevent and treat naturally developing tumors. More recently, we are using a genetic model of pancreatic cancer developed to understand the early inflammatory changes that promote cancer development.
The identification of human tumor antigens recognized by T cells. We are using a novel functional genetic approach developed in our laboratory. Human tumor specific T cells from vaccinated patients are used to identify immune relevant antigens that are chosen based on an initial genomic screen of overexpressed gene products. Several candidate targets have been identified and the prevelence of vaccine induced immunity has been assessed .
This rapid screen to identify relevant antigenic targets will allow us to begin to dissect the mechanisms of tumor immunity induction and downregulation at the molecular level in cancer patients. More recently, we are using proteomics to identify proteins involved in pancreatic cancer development. We recently identified Annexin A2 as a molecule involved in metastases.
The analysis of antitumor immune responses in patients enrolled on vaccine studies. The focus is on breast and pancreatic cancers. We are atttempting to identify in vitro correlates of in vivo antitumor immunity induced by vaccine strategies developed in the laboratory and currently under study in the clinics. view more -
Erika Darrah Lab
Lab WebsiteThe Erika Darrah Lab is primarily interested in the mechanisms underlying the development and p...rogression of autoimmunity in rheumatoid arthritis (RA), with a particular focus on the peptidyl arginine deiminase (PAD) enzymes. We’re focused on understanding the development of PAD4-activating autoantibodies over time and how they contribute to the development of erosive disease. Studies are underway to determine if the newly discovered antibody is mimicking a naturally occurring PAD4 binding partner and to identify potentially pro-inflammatory effects of citrullinated proteins on effector cells of the immune system. view more
Research Areas: antibodies, autoimmune diseases, peptidylarginine deiminase enzymes, rheumatoid arthritis -
Foster Lab
Lab WebsiteThe Foster Lab uses the tools of protein biochemistry and proteomics to tackle fundamental prob...lems in the fields of cardiac preconditioning and heart failure. Protein networks are perturbed in heart disease in a manner that correlates only weakly with changes in mRNA transcripts. Moreover, proteomic techniques afford the systematic assessment of post-translational modifications that regulate the activity of proteins responsible for every aspect of heart function from electrical excitation to contraction and metabolism. Understanding the status of protein networks in the diseased state is, therefore, key to discovering new therapies.
Research Areas: proteomics, protein biochemistry, heart failure, cardiology, cardiac preconditioning, cardiomyopathy
D. Brian Foster, Ph.D., is an assistant professor of medicine in the division of cardiology, and serves as Director of the Laboratory of Cardiovascular Biochemistry at the Johns Hopkins University School of Medicine.
view more -
Green Lab
Lab WebsiteWork in the Green Lab is centered on the ribosome. The overall fidelity of protein synthesis ap...pears to be limited by the action of the ribosome, which is the two-subunit macromolecular machine responsible for decoding and translating messenger RNAs (mRNAs) into protein in all organisms. Our work is divided into four general project areas. The longest-standing research area concerns the interactions of eubacterial ribosomes and release factors. The goal is to understand the mechanism of action of release factors on the ribosome. A second research area involves biochemical and structure/function studies of the miRNA pathway, particularly the mechanism of action of the Argonaute proteins and their interacting factors. A third area of work in the lab is centered around regulation of eukaryotic translation, specifically in understanding the mechanism behind various mRNA quality control pathways and the interactions of proteins therein, as well as with the ribosome. The newest area of research in the lab extends our strengths in ribosome biochemistry to characterize the translation status of the cell using the ribosome profiling. We are using this technique to better understand the role of several factors involved in eukaryotic and prokaryotic translation fidelity. view more
Research Areas: biochemistry, genomics, ribosome, RNA -
Haughey Lab: Neurodegenerative and Neuroinfectious Disease
Lab WebsiteDr. Haughey directs a disease-oriented research program that address questions in basic neurobi...ology, and clinical neurology. The primary research interests of the laboratory are:
Research Areas: multiple sclerosis, PTSD, HAND, HIV
1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability.
3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions. view more -
Heng Zhu Lab
Lab WebsiteThe Zhu lab is focused on characterizing the activities of large collection of proteins, buildi...ng signaling networks for better understanding the mechanisms of biological processes, and identifying biomarkers in human diseases and cancers. More specifically, our group is interested in analyzing protein posttranslational modifications, and identifying important components involved in transcription networks and host-pathogen interactions on the proteomics level, and biomarkers in human IBD diseases. view more
Research Areas: inflammatory bowel disease, biomarkers, cancer -
Intestinal Chloride Secretion
Intestinal chloride secretion is stimulated during diarrhea. Cholera toxin is secreted by bacte...rium Vibrio cholera and is responsible for the watery diarrhea after cholera infection. Mechanistically, cholera toxin increases intracellular cyclic AMP, which subsequently activates protein kinase A and the cystic fibrosis transmembrane regulator chloride channel (CFTR).
Research Areas: gastroenterology, diarrhea
However, we recently identified an intestinal cAMP-Ca cross-talk signaling pathway that is initiated by elevation of intracellular cAMP and subsequently elevates intracellular Ca concentrations through the exchange protein activated by cAMP (Epac). This observation suggests that both CFTR and calcium-activated chloride channels are targets of elevated intracellular cAMP signaling molecule.
Therefore, we are studying the role of calcium-activated Cl channels in intestinal chloride secretion under physiological conditions and during diarrhea. We are also determining whether the recently identified transmembrane protein 16 family of proteins, which are calcium-activated chloride channels, is also involved in intestinal chloride secretion in addition to the well characterized CFTR channel.
Increased understanding of regulation of intestinal Cl secretion provides the necessary background information for the development of therapeutic drugs for the treatment of diarrhea, constipation and cystic fibrosis. The discovery that calcium-activated chloride channels are involved in intestinal chloride secretion provides additional targets for anti-diarrhea drug development. view more -
Intestinal Na/H Exchangers
Secretory diarrhea is a leading cause of childhood morbidity and mortality in developing countr...ies. While diarrhea can be treated with oral rehydration solution (ORS), inclusion of zinc with oral ORS has been shown to reduce the duration of diarrhea. However, how zinc improves diarrhea is not known.
Research Areas: gastroenterology, diarrhea
It has been shown that zinc acts as an intestinal epithelial cell basolateral potassium channel blocker of cyclic AMP-mediated chloride secretion. We discovered that zinc also stimulates intestinal sodium and water absorption via the epithelial Na/H exchanger, NHE3. Zinc reverses the effect of cyclic AMP inhibition of NHE3 activity. The effect of zinc on NHE3 cannot be duplicated with other divalent metal ions. It has been well established that Na/H exchanger regulatory proteins are involved in NHE3 regulation.
Whether these regulatory proteins are involved in zinc stimulation of NHE3 is a focus of our study. Our goal is to reveal mechanisms to explain how zinc improves diarrhea and to understand the role of zinc in salt and water homeostasis in the gut. Our study will provide a scientific basis to justify the inclusion of zinc in ORS for the treatment of secretory diarrhea. view more -
J. Marie Hardwick Laboratory
Lab WebsiteOur research is focused on understanding the basic mechanisms of programmed cell death in disea...se pathogenesis. Billions of cells die per day in the human body. Like cell division and differentiation, cell death is also critical for normal development and maintenance of healthy tissues. Apoptosis and other forms of cell death are required for trimming excess, expired and damaged cells. Therefore, many genetically programmed cell suicide pathways have evolved to promote long-term survival of species from yeast to humans. Defective cell death programs cause disease states. Insufficient cell death underlies human cancer and autoimmune disease, while excessive cell death underlies human neurological disorders and aging. Of particular interest to our group are the mechanisms by which Bcl-2 family proteins and other factors regulate programmed cell death, particularly in the nervous system, in cancer and in virus infections. Interestingly, cell death regulators also regulate many other cellular processes prior to a death stimulus, including neuronal activity, mitochondrial dynamics and energetics. We study these unknown mechanisms.
Research Areas: cell death
We have reported that many insults can trigger cells to activate a cellular death pathway (Nature, 361:739-742, 1993), that several viruses encode proteins to block attempted cell suicide (Proc. Natl. Acad. Sci. 94: 690-694, 1997), that cellular anti-death genes can alter the pathogenesis of virus infections (Nature Med. 5:832-835, 1999) and of genetic diseases (PNAS. 97:13312-7, 2000) reflective of many human disorders. We have shown that anti-apoptotic Bcl-2 family proteins can be converted into killer molecules (Science 278:1966-8, 1997), that Bcl-2 family proteins interact with regulators of caspases and regulators of cell cycle check point activation (Molecular Cell 6:31-40, 2000). In addition, Bcl-2 family proteins have normal physiological roles in regulating mitochondrial fission/fusion and mitochondrial energetics to facilitate neuronal activity in healthy brains. view more -
Katherine Wilson Lab
Research in the Wilson Lab focuses on three components of nuclear lamina structure: lamins, LEM...-domain proteins (emerin), and BAF.
Research Areas: cell biology, Emery-Dreifuss muscular dystrophy (EDMD), accelerated aging, chromatin, diabetes, genomics, emerin, nuclear lamina, lipodystrophy, cardiomyopathy
These three proteins all bind each other directly, and are collectively required to organize and regulate chromatin, efficiently segregate chromosomes and rebuild nuclear structure after mitosis. Mutations in one or more of these proteins cause a variety of diseases including Emery-Dreifuss muscular dystrophy (EDMD), cardiomyopathy, lipodystrophy and diabetes, and accelerated aging.
We are examining emerin's role in mechanotransduction, how emerin and lamin A are regulated, and whether misregulation contributes to disease.
view more -
Landon King Lab
The Landon King Lab studies aquaporins water-specific membrane channel proteins. We hope to und...erstand how these proteins contribute to water homeostasis in the respiratory tract and how their expression or function may be altered in disease states. view more
Research Areas: respiratory system, proteomics, aquaporins -
Mark Donowitz Lab
Lab WebsiteResearch in the Mark Donowitz Lab is primarily focused on the development of drug therapy for d...iarrheal disorders, intestinal salt absorption and the proteins involved including their regulation, and the use of human enteroids to understand intestinal physiology and pathophysiology. We study two gene families initially recognized by this laboratory: mammalian Na/H exchangers and the subgroup of PDZ domain containing proteins present in the brush border of epithelial cells called NHERF family. A major finding is that NHE3 exists simultaneously in different sized complexes in the brush border, which change separately as part of signal transduction initiated by mimics of the digestive process. Relevance to the human intestine is being pursued using mini-human intestine made from Lgr5+ stems cells made from intestinal biopsies and measuring function via two-photon microscopy. view more
Research Areas: gastrointestinal system, gastroenterology, pathophysiology, diarrhea, drugs, physiology -
Mass Spectrometry Core
Lab WebsiteThe Mass Spectrometry Core identifies and quantifies proteins that change expression in well-ch...aracterized protein fractions from cancerous cells or tissues. This includes identifying and quantifying changes in binding partners and post-translational modifications. Column chromatography and gel electrophoresis-based one and two-dimensional separations of protein complexes coupled to mass spectrometry are used. Techniques such as difference gel electrophoresis (DIGE), isobaric tag for relative and absolute quantitation (iTRAQ) and 18O-labeling as well as non-labeling methods (MudPit, multi-dimensional protein identification technology) are available for quantifying relative differences in protein expression and post-translational modifications. We developed methods to detect post-translational modifications such as LCMS methods to accurately determine the intact mass of proteins, selective fluorescent labeling of S-nitrosothiols (S-FLOS) to detect nitrosated cysteines in proteins, and ion mapping methods to map post-translational modifications that produce a signature mass or mass difference when the modified peptide is fragmented. view more
Research Areas: mass spectrometry, proteomics, cancer -
Michael Caterina Lab
The Caterina lab is focused on dissecting mechanisms underlying acute and chronic pain sensatio...n. We use a wide range of approaches, including mouse genetics, imaging, electrophysiology, behavior, cell culture, biochemistry and neuroanatomy to tease apart the molecular and cellular contributors to pathological pain sensation. A few of the current projects in the lab focus on defining the roles of specific subpopulations of neuronal and non-neuronal cells to pain sensation, defining the role of RNA binding proteins in the development and maintenance of neuropathic pain, and understanding how rare skin diseases known as palmoplantar keratodermas lead to severe pain in the hands and feet. view more
Research Areas: biophysics, biochemistry, proteomics, inflammation, pain -
O'Rourke Lab
Lab WebsiteThe O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac ...cells in normal and diseased states.
Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells
Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.
We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole.
Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.
The motivation for all of the work is to understand
• how the molecular details of the heart cell work together to maintain function and
• how the synchronization of the parts can go wrong
Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.
Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University. view more -
Paul Worley Lab
Lab WebsiteThe Paul Worley Lab examines the molecular basis of learning and memory. In particular, we clon...ed a set of immediate early genes (IEGs) that are rapidly transcribed in neurons involved in information processing, and that are essential for long term memory. IEG proteins can directly modify synapses and provide insight into cellular mechanisms that support synapse-specific plasticity. view more
Research Areas: synaptic plasticity, neurons, memory, learning, immediate early genes -
Retrovirus Laboratory
Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of len...tivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.
Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus
Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and pulmonary disease. view more -
Ronald Schnaar Lab
The Ronald Schnaar Lab is involved in the rapidly expanding field of glycobiology, which studie...s cell surface glycans, lectins, and their roles in cell physiology.
Research Areas: cell physiology, HIV, neurocognitive disorders, glycobiology
Current projects in our lab study include (1) Glycans and glycan-binding proteins in inflammatory lung diseases, (2) Ganglioside function in the brain, and (3) HIV-Tat and HIV-associated neurocognitive disorders. view more -
Saraswati Sukumar Lab
Lab WebsiteOur lab is focused on using comprehensive gene expression, methylation and sequencing and metab...olomics analysis to identify alterations in breast cancer, and exploiting these for early detection and therapy. Among deferentially expressed genes, our lab has focused on the HOX genes. HOX genes are intimately involved in the development of resistance to both chemotherapy and to agents targeting the estrogen receptor. Our work explores the alternate pathways that are activated by HOX proteins leading to this resistance and novel treatments to overcome resistance in both tissue culture and xenograft models. In addition, epigenetically silenced genes and a metabolic reprogramming in tumors also trigger novel early detection and therapeutic strategies. We are testing the utility of differentiation therapy through reactivating RAR-beta in breast cancer using histone deacetylase inhibitors with great success. Also, we are targeting enzymes involved in gluconeogenesis and glycolysis with small molecule FDA-approved antimetabolites to achieve antitumor effects. view more
Research Areas: breast cancer, genetics -
Sean Taverna Laboratory
The Taverna Laboratory studies histone marks, such as lysine methylation and acetylation, and h...ow they contribute to an epigenetic/histone code that dictates chromatin-templated functions like transcriptional activation and gene silencing. Our lab uses biochemistry and cell biology in a variety of model organisms to explore connections between gene regulation and proteins that write and read histone marks, many of which have clear links to human diseases like leukemia and other cancers. We also investigate links between small RNAs and histone marks involved in gene silencing. view more
Research Areas: biochemistry, histone marks, cell biology, leukemia, cancer, epigenetics, eukaryotic cells, gene silencing, RNA -
Seth Blackshaw Lab
Lab WebsiteThe Seth Blackshaw Lab uses functional genomics and proteomics to rapidly identify the molecula...r mechanisms that regulate cell specification and survival in both the retina and hypothalamus. We have profiled gene expression in both these tissues, from the start to the end of neurogenesis, characterizing the cellular expression patterns of more than 1,800 differentially expressed transcripts in both tissues. Working together with the lab of Heng Zhu in the Department of Pharmacology, we have also generated a protein microarray comprised of nearly 20,000 unique full-length human proteins, which we use to identify biochemical targets of developmentally important genes of interest. view more
Research Areas: retina, central nervous system, biochemistry, hypothalamus, proteomics, genomics -
Shanthini Sockanathan Laboratory
Lab WebsiteThe Shanthini Sockanathan Laboratory uses the developing spinal cord as our major paradigm to d...efine the mechanisms that maintain an undifferentiated progenitor state and the molecular pathways that trigger their differentiation into neurons and glia. The major focus of the lab is the study of a new family of six-transmembrane proteins (6-TM GDEs) that play key roles in regulating neuronal and glial differentiation in the spinal cord. We recently discovered that the 6-TM GDEs release GPI-anchored proteins from the cell surface through cleavage of the GPI-anchor. This discovery identifies 6-TM GDEs as the first vertebrate membrane bound GPI-cleaving enzymes that work at the cell surface to regulate GPI-anchored protein function. Current work in the lab involves defining how the 6-TM GDEs regulate cellular signaling events that control neuronal and glial differentiation and function, with a major focus on how GDE dysfunction relates to the onset and progression of disease. To solve these questions, we use an integrated approach that includes in vivo models, imaging, molecular biology, biochemistry, developmental biology, genetics and behavior. view more
Research Areas: glia, biochemistry, neurons, imaging, developmental biology, genomics, spinal cord, behavior, molecular biology -
Solomon Snyder Laboratory
Lab WebsiteInformation processing in the brain reflects communication among neurons via neurotransmitters.... The Solomon Snyder Laboratory studies diverse signaling systems including those of neurotransmitters and second messengers as well as the actions of drugs upon these processes. We are interested in atypical neurotransmitters such as nitric oxide (NO), carbon monoxide (CO), and the D-isomers of certain amino acids, specifically D-serine and D-aspartate. Our discoveries are leading to a better understanding of how certain drugs for Parkinson's disease and Hungtington's disease interact with cells and proteins. Understanding how other second messengers work is giving us insight into anti-cancer therapies. view more
Research Areas: Huntington's disease, amino acids, neurotransmitters, brain, cancer, nitric oxide, drugs, carbon monoxide, Parkinson's disease, nervous system -
Steven Claypool Lab
Lab WebsiteResearch in the Claypool Lab is focused on defining how lipids and membrane proteins interact t...o establish and maintain normal mitochondrial function and how derangements in this complex relationship result in pathophysiology. We have demonstrated that yeast lacking tafazzin recapitulates all of the phospholipid abnormalities observed in human patients and many of the mitochondrial defects.
Research Areas: biochemistry, proteomics, lipids, yeast, mitochondria, oxidative phosphorylation
Another major project in our lab focuses on the mitochondrial ADP/ATP carrier that is required for oxidative phosphorylation. Researchers are studying how these novel interactions help establish normal mitochondrial function, the biochemical details of these associations, and whether disturbances in these assemblies can contribute to mitochondrial dysfunction. view more -
Susan Michaelis Lab
The Michaelis Laboratory's research goal is to dissect fundamental cellular processes relevant ...to human health and disease, using yeast and mammalian cell biology, biochemistry and high-throughput genomic approaches. Our team studies the cell biology of lamin A and its role in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Other research focuses on the core cellular machinery involved in recognition of misfolded proteins. Understanding cellular protein quality control machinery will ultimately help researchers devise treatments for protein misfolding diseases in which degradation is too efficient or not enough. view more
Research Areas: biochemistry, cell biology, protein folding, lamin A, aging, genomics, Hutchinson-Gilford progeria syndrome, yeast -
Tamara O'Connor Lab
The O'Connor Lab studies the molecular basis of infectious disease using Legionella pneumophila... pathogenesis as a model system.
Research Areas: infectious disease, Legionella pneumophila, genomics, pathogenesis, molecular biology
We are looking at the network of molecular interactions acting at the host-pathogen interface. Specifically, we use L. pneumophila pathogenesis to examine the numerous mechanisms by which an intracellular bacterial pathogen can establish infection, how it exploits host cell machinery to accomplish this, and how individual proteins and their component pathways coordinately contribute to disease.
We are also studying the role of environmental hosts in the evolution of human pathogens. Using genetics and functional genomics, we compare and contrast the repertoires of virulence proteins required for growth in a broad assortment of hosts, how the network of molecular interactions differs between hosts, and the mechanisms by which L. pneumophila copes with this variation.
view more -
The Sun Laboratory
Lab WebsiteThe nervous system has extremely complex RNA processing regulation. Dysfunction of RNA metaboli...sm has emerged to play crucial roles in multiple neurological diseases. Mutations and pathologies of several RNA-binding proteins are found to be associated with neurodegeneration in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An alternative RNA-mediated toxicity arises from microsatellite repeat instability in the human genome. The expanded repeat-containing RNAs could potentially induce neuron toxicity by disrupting protein and RNA homeostasis through various mechanisms.
Research Areas: ALS, neurodegeneration, RNA
The Sun Lab is interested in deciphering the RNA processing pathways altered by the ALS-causative mutants to uncover the mechanisms of toxicity and molecular basis of cell type-selective vulnerability. Another major focus of the group is to identify small molecule and genetic inhibitors of neuron toxic factors using various high-throughput screening platforms. Finally, we are also highly interested in developing novel CRISPR technique-based therapeutic strategies. We seek to translate the mechanistic findings at molecular level to therapeutic target development to advance treatment options against neurodegenerative diseases. view more -
Wei Dong Gao Lab
Lab WebsitePrincipal Investigator:
Wei Dong Gao, M.B., M.D., Ph.D., M.S.
Anesthesiology and Critical Care MedicineWork in the Wei Dong Gao Lab primarily focuses on heart failure and defining molecular and cell...ular mechanisms of contractile dysfunction. We use molecular biology and proteomic techniques to investigate the changes that myofilament proteins undergo during heart failure and under drug therapy. We're working to determine the molecular nature of nitroxyl (HNO) modification of tropomyosin. view more
Research Areas: heart disease, contractile dysfunction, heart failure, cardiovascular diseases, molecular biology -
William B. Guggino Lab
Lab WebsiteWork in the William B. Guggino Lab focuses on the structure of the cystic fibrosis transmembran...e conductance regulator (CFTR) and water channels; the molecular structure of transport proteins in epithelial cell membranes; and gene therapies to treat cystic fibrosis (CF) patients. We are also working to identify CF’s specific defect in chloride channel regulation. One recent study showed that insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR. view more
Research Areas: cell biology, cystic fibrosis, kidney diseases, gene therapy, ion channels -
Zachara Lab
Lab WebsiteElevation of O-GlcNAc levels modulates numerous pathways in a manner consistent with increased ...cell survival, including the expression of heat shock proteins. The Zachara Lab's goal is to understand the O-GlcNAc regulated stress response, how this can be manipulated to improve patient outcome and how this response is misregulated in disease. view more
Research Areas: stress response, proteomics, O-GlcNAc, heat shock proteins -
Zhaozhu Qiu Laboratory
Lab WebsiteIon channels are pore-forming membrane proteins gating the flow of ions across the cell membran...e. Among their many functions, ion channels regulate cell volume, control epithelial fluid secretion, and generate the electrical impulses in our brain. The Qiu Lab employs a multi-disciplinary approach including high-throughput functional genomics, electrophysiology, biochemistry, and mouse genetics to discover novel ion channels and to elucidate their role in health and disease. view more
Research Areas: ion channel, neurological disease, electrophysiology, functional genomics, sensory neuroscience -
Zhu Lab
The Zhu lab is focused on characterizing the activities of large collection of proteins, buildi...ng signaling networks for better understanding the mechanisms of biological processes, and identifying biomarkers in human diseases and cancers.
Research Areas: proteomics, biomarkers, cancer, genomics, protein chip, signaling networks
More specifically, our group is interested in analyzing protein posttranslational modifications, and identifying important components involved in transcription networks and host-pathogen interactions on the proteomics level, and biomarkers in human IBD diseases. view more
- 1