Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 31 to 40 of 43 results for proteins

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Shigeki Watanabe Lab

    Research in the Shigeki Watanabe Lab focuses on the cellular and molecular characterizations of rapid changes that occur during synaptic plasticity. Our team is working to determine the composition and distribution of proteins and lipids in the synapse as well as understand how the activity alters their distribution. Ultimately, we seek to discover how the misregulation of protein and lipid compositions lead to synaptic dysfunction. Our studies make use of cutting-edge electron microscopy techniques in combination with biochemical and molecular approaches.

    Research Areas: microscopy, cell biology, proteins, lipids, molecular biology

    Lab Website

    Principal Investigator

    Shigeki Watanabe, Ph.D.

    Department

    Cell Biology

  • Solomon Snyder Laboratory

    Information processing in the brain reflects communication among neurons via neurotransmitters. The Solomon Snyder Laboratory studies diverse signaling systems including those of neurotransmitters and second messengers as well as the actions of drugs upon these processes. We are interested in atypical neurotransmitters such as nitric oxide (NO), carbon monoxide (CO), and the D-isomers of certain amino acids, specifically D-serine and D-aspartate. Our discoveries are leading to a better understanding of how certain drugs for Parkinson's disease and Hungtington's disease interact with cells and proteins. Understanding how other second messengers work is giving us insight into anti-cancer therapies.

    Research Areas: Huntington's disease, amino acids, neurotransmitters, brain, cancer, nitric oxide, drugs, carbon monoxide, Parkinson's disease, nervous system

  • Steven Claypool Lab

    Research in the Claypool Lab is focused on defining how lipids and membrane proteins interact to establish and maintain normal mitochondrial function and how derangements in this complex relationship result in pathophysiology. We have demonstrated that yeast lacking tafazzin recapitulates all of the phospholipid abnormalities observed in human patients and many of the mitochondrial defects.

    Another major project in our lab focuses on the mitochondrial ADP/ATP carrier that is required for oxidative phosphorylation. Researchers are studying how these novel interactions help establish normal mitochondrial function, the biochemical details of these associations, and whether disturbances in these assemblies can contribute to mitochondrial dysfunction.

    Research Areas: biochemistry, proteomics, lipids, yeast, mitochondria, oxidative phosphorylation

    Lab Website

    Principal Investigator

    Steven Claypool, Ph.D.

    Department

    Physiology

  • Susan Michaelis Lab

    The Michaelis Laboratory's research goal is to dissect fundamental cellular processes relevant to human health and disease, using yeast and mammalian cell biology, biochemistry and high-throughput genomic approaches. Our team studies the cell biology of lamin A and its role in the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Other research focuses on the core cellular machinery involved in recognition of misfolded proteins. Understanding cellular protein quality control machinery will ultimately help researchers devise treatments for protein misfolding diseases in which degradation is too efficient or not enough.

    Research Areas: biochemistry, cell biology, protein folding, lamin A, aging, genomics, Hutchinson-Gilford progeria syndrome, yeast

    Principal Investigator

    Susan Michaelis, Ph.D.

    Department

    Cell Biology

  • Tamara O'Connor Lab

    The O'Connor Lab studies the molecular basis of infectious disease using Legionella pneumophila pathogenesis as a model system.

    We are looking at the network of molecular interactions acting at the host-pathogen interface. Specifically, we use L. pneumophila pathogenesis to examine the numerous mechanisms by which an intracellular bacterial pathogen can establish infection, how it exploits host cell machinery to accomplish this, and how individual proteins and their component pathways coordinately contribute to disease.

    We are also studying the role of environmental hosts in the evolution of human pathogens. Using genetics and functional genomics, we compare and contrast the repertoires of virulence proteins required for growth in a broad assortment of hosts, how the network of molecular interactions differs between hosts, and the mechanisms by which L. pneumophila copes with this variation.

    Research Areas: infectious disease, Legionella pneumophila, genomics, pathogenesis, molecular biology

    Principal Investigator

    Tamara O'Connor, Ph.D.

    Department

    Biological Chemistry

  • The Burns Lab

    Our research laboratory studies the roles mobile DNAs play in human disease. Our group was one of the first to develop a targeted method for amplifying mobile DNA insertion sites in the human genome, and we showed that these are a significant source of structural variation (Huang et al., 2010). Since that time, our group has continued to develop high throughput tools to characterize these understudied sequences in genomes and to describe the expression and genetic stability of interspersed repeats in normal and malignant tissues. We have developed a monoclonal antibody to one of the proteins encoded for by Long INterspersed Element-1 (LINE-1) and showed its aberrant expression in a wide breadth of human cancers (Rodi? et al., 2014). We have demonstrated acquired LINE-1 insertion events during the evolution of metastatic pancreatic ductal adenocarcinoma and other gastrointestinal tract tumors (Rodi? et al., 2015). We have major projects focused on studying functional consequences of inh...erited sequence variants, and exciting evidence that these predispose to cancer risk and other disease phenotypes. Our laboratory is using a combination of genome wide association study (GWAS) analyses, custom RNA-seq analyses, semi-high throughput gene expression reporter assays, and murine models to pursue this hypothesis. view more

    Research Areas: cancer, DNA, malignant tumors

    Lab Website

    Principal Investigator

    Kathleen Burns, M.D., Ph.D.

    Department

    Pathology

  • The Sun Laboratory

    The nervous system has extremely complex RNA processing regulation. Dysfunction of RNA metabolism has emerged to play crucial roles in multiple neurological diseases. Mutations and pathologies of several RNA-binding proteins are found to be associated with neurodegeneration in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). An alternative RNA-mediated toxicity arises from microsatellite repeat instability in the human genome. The expanded repeat-containing RNAs could potentially induce neuron toxicity by disrupting protein and RNA homeostasis through various mechanisms.

    The Sun Lab is interested in deciphering the RNA processing pathways altered by the ALS-causative mutants to uncover the mechanisms of toxicity and molecular basis of cell type-selective vulnerability. Another major focus of the group is to identify small molecule and genetic inhibitors of neuron toxic factors using various high-throughput screening platforms. Finally, we are also highly i...nterested in developing novel CRISPR technique-based therapeutic strategies. We seek to translate the mechanistic findings at molecular level to therapeutic target development to advance treatment options against neurodegenerative diseases. view more

    Research Areas: ALS, neurodegeneration, RNA

    Lab Website

    Principal Investigator

    Shuying Sun, Ph.D.

    Department

    Pathology

  • Tom Woolf Lab

    The Tom Woolf Lab studies the quarter of the genome devoted to membrane proteins. This rapidly growing branch of bioinformatics, which includes computational biophysics, represents the main research direction of our group. We aim to provide insight into critical issues for membrane systems. In pursuit of these goals, we use extensive computer calculations to build an understanding of the relations between microscopic motions and the world of experimental measurements. Our calculations use our own Beowulf computer cluster as well as national supercomputer centers. An especially strong focus has been on the computed motions of proteins and all-atom models of the lipid bilayers that mediate their influence. To compute these motions, we use the molecular dynamics program CHARMM. We hope to use our understanding of the molecular motions for the prediction of membrane protein structures using new computational methods.

    Research Areas: proteomics, genomics, bioinformatics, computational biophysics

    Lab Website

    Principal Investigator

    Thomas Woolf, Ph.D.

    Department

    Physiology

  • Wei Dong Gao Lab

    Work in the Wei Dong Gao Lab primarily focuses on heart failure and defining molecular and cellular mechanisms of contractile dysfunction. We use molecular biology and proteomic techniques to investigate the changes that myofilament proteins undergo during heart failure and under drug therapy. We're working to determine the molecular nature of nitroxyl (HNO) modification of tropomyosin.

    Research Areas: heart disease, contractile dysfunction, heart failure, cardiovascular diseases, molecular biology

  • William B. Guggino Lab

    Work in the William B. Guggino Lab focuses on the structure of the cystic fibrosis transmembrane conductance regulator (CFTR) and water channels; the molecular structure of transport proteins in epithelial cell membranes; and gene therapies to treat cystic fibrosis (CF) patients. We are also working to identify CF’s specific defect in chloride channel regulation. One recent study showed that insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR.

    Research Areas: cell biology, cystic fibrosis, kidney diseases, gene therapy, ion channels

    Lab Website

    Principal Investigator

    William Guggino, Ph.D.

    Department

    Physiology

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5