Skip Navigation

Find a Research Lab

Research Lab Results for proteins

Displaying 1 to 10 of 42 results
Results per page:
  • Advanced Optics Lab

    Lab Website
    Principal Investigator:
    Scot Kuo, Ph.D.
    Biomedical Engineering

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, ...to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.
    view more

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering
  • Alex Kolodkin Laboratory

    Lab Website
    Principal Investigator:
    Alex Kolodkin, Ph.D.
    Neuroscience

    Research in the Alex Kolodkin Laboratory is focused on understanding how neuronal connectivity ...is established during development. Our work investigates the function of extrinsic guidance cues and their receptors on axonal guidance, dendritic morphology and synapse formation and function. We have investigated how neural circuits are formed and maintained through the action of guidance cues that include semaphorin proteins, their classical plexin and neuropilin receptors, and also novel receptors. We employ a cross-phylogenetic approach, using both invertebrate and vertebrate model systems, to understand how guidance cues regulate neuronal pathfinding, morphology and synaptogenesis. We also seek to understand how these signals are transduced to cytosolic effectors. Though broad in scope, our interrogation of the roles played by semaphorin guidance cues provides insight into the regulation of neural circuit assembly and function. Our current work includes a relatively new interest in understanding the origins of laminar organization in the central nervous system. view more

    Research Areas: central nervous system, neural circuits, neurodevelopment, neuronal connectivity, laminar organization
  • Anne Murphy Laboratory

    Principal Investigator:
    Anne Murphy, M.D.
    Medicine
    Pediatrics

    Anne Murphy’s laboratory studies cardiomyopathy and key proteins that are part of the contracti...le apparatus. The team is looking at how modifications to these proteins might affect various diseases and heart failure. She also investigates the role of genetics in pediatric heart failure associated with acute heart failure, which is sometimes attributed to myocarditis. Her laboratory has received grants from the American Heart Association, the National Institutes of Health and the Children’s Cardiomyopathy Foundation. Murphy received the Rowe Award for Cardiology Research from the Society for Pediatric Research and other awards. Her research on the molecular basis of myocardial stunning was named one of the top 10 research achievements for 1999 by the American Heart Association. view more

    Research Areas: pediatric cardiology, cardiomyopathy
  • Center for Epithelial Disorders

    Principal Investigator:
    Mark Donowitz, M.D.
    Medicine

    The Johns Hopkins Center for Epithelial Disorders focuses on research into the physiology and p...athophysiology of epithelial cells (cells that line the cavities and interior surfaces of the body) of the gastrointestinal (GI) tract, liver, pancreas and kidney. Specifically, the center’s research seeks to:

    -Understand the mechanisms regulating the activity of transport proteins (including channels) of epithelial cells
    Characterize the mechanisms by which polarity of epithelial cells are maintained
    -Investigate the mechanisms controlling transcription of epithelial-specific genes
    Understand the pathophysiological basis of GI and renal diseases that involve the preceding three components
    -The center also provides a framework for training fellows in gastroenterology and hepatology to become independent investigators.

    The center is funded primarily through individual investigator-initiated extramural research grant support from the National Institutes of Health (NIH) as well as multi-investigator grants including RO1, PO1, UO1 and R24.
    view more

    Research Areas: gastroenterology, epithelial cells
  • Center for Research on Cardiac Intermediate Filaments

    Lab Website
    Principal Investigator:
    Giulio Agnetti, Ph.D.
    Medicine

    The CRCIF was established to foster collaborative efforts aimed at elucidating the role of inte...rmediate filaments (IFs) in the heart. Intermediate filaments constitute a class of cytoskeletal proteins in metazoan cells, however, different from actin microfilaments and tubulin microtubules, their function in cardiac cells is poorly understood. Unique from the other two components of the cytoskeleton, IFs are formed by cell type-specific proteins. Desmin is the main component of the IFs in the cardiac myocytes. We measured the consistent induction of desmin post-translational modifications (PTMs, such as phosphorylation, etc.) in various clinical and experimental models of heart failure. Therefore, one of our main focuses is to determine the contribution of desmin PTMs to the development of heart failure in different animal and clinical models.

    Active Projects:

    • Quantification of desmin PTM-forms in different forms of heart failure at the peptide level using mass spectrometry
    • Functional assessment of the role of desmin PTMs in heart failure development using single site mutagenesis and biophysical methods
    • Molecular characterization of desmin preamyloid oligomers using mass spectrometry, in vitro and in vivo imaging
    • Assessment of the diagnostic and pharmacological value of desmin PTMs in heart failure development
    view more

    Research Areas: heart failure, intermediate filaments
  • David Graham Lab

    Principal Investigator:
    David Graham, Ph.D., M.S.
    Molecular and Comparative Pathobiology

    The David Graham Lab studies the consequences of HIV interactions with the immune system, the r...esulting pathogenesis and how to sabotage these interactions. We apply advanced technologies like mass spectrometry to dissect processes at the molecular level. We are also actively involved in cardiovascular research and studies the ways proteins are organized into functional units in different cell types of the heart.

    Major projects in our lab are organized into three major areas: (1) H/SIV pathogenesis and neuropathogenesis, (2) Cardiovascular disease, and (3) High technology development
    view more

    Research Areas: immunology, mass spectrometry, HIV, cardiovascular, SIV, pathogenesis
  • Elizabeth M. Jaffee, M.D.

    Lab Website
    Principal Investigator:
    Elizabeth Jaffee, M.D.
    Oncology

    Current projects include:

    The evaluation of mechanisms of immune tolerance to cancer in m...ouse models of breast and pancreatic cancer. We have characterized the HER-2/neu transgenic mouse model of spontaneous mammary tumors.
    This model demonstrates immune tolerance to the HER-2/neu gene product. This model is being used to better understand the mechanisms of tolerance to tumor. In addition, this model is being used to develop vaccine strategies that can overcome this tolerance and induce immunity potent enough to prevent and treat naturally developing tumors. More recently, we are using a genetic model of pancreatic cancer developed to understand the early inflammatory changes that promote cancer development.

    The identification of human tumor antigens recognized by T cells. We are using a novel functional genetic approach developed in our laboratory. Human tumor specific T cells from vaccinated patients are used to identify immune relevant antigens that are chosen based on an initial genomic screen of overexpressed gene products. Several candidate targets have been identified and the prevelence of vaccine induced immunity has been assessed .
    This rapid screen to identify relevant antigenic targets will allow us to begin to dissect the mechanisms of tumor immunity induction and downregulation at the molecular level in cancer patients. More recently, we are using proteomics to identify proteins involved in pancreatic cancer development. We recently identified Annexin A2 as a molecule involved in metastases.

    The analysis of antitumor immune responses in patients enrolled on vaccine studies. The focus is on breast and pancreatic cancers. We are atttempting to identify in vitro correlates of in vivo antitumor immunity induced by vaccine strategies developed in the laboratory and currently under study in the clinics.
    view more

    Research Areas: immunology, cancer, anti-cancer drugs
  • Erika Darrah Lab

    Lab Website
    Principal Investigator:
    Erika Darrah, Ph.D.
    Medicine

    The Erika Darrah Lab is primarily interested in the mechanisms underlying the development and p...rogression of autoimmunity in rheumatoid arthritis (RA), with a particular focus on the peptidyl arginine deiminase (PAD) enzymes. We’re focused on understanding the development of PAD4-activating autoantibodies over time and how they contribute to the development of erosive disease. Studies are underway to determine if the newly discovered antibody is mimicking a naturally occurring PAD4 binding partner and to identify potentially pro-inflammatory effects of citrullinated proteins on effector cells of the immune system. view more

    Research Areas: antibodies, autoimmune diseases, peptidylarginine deiminase enzymes, rheumatoid arthritis
  • Foster Lab

    Lab Website
    Principal Investigator:
    D. Brian Foster, Ph.D., M.Sc.
    Medicine

    The Foster Lab uses the tools of protein biochemistry and proteomics to tackle fundamental prob...lems in the fields of cardiac preconditioning and heart failure. Protein networks are perturbed in heart disease in a manner that correlates only weakly with changes in mRNA transcripts. Moreover, proteomic techniques afford the systematic assessment of post-translational modifications that regulate the activity of proteins responsible for every aspect of heart function from electrical excitation to contraction and metabolism. Understanding the status of protein networks in the diseased state is, therefore, key to discovering new therapies.

    D. Brian Foster, Ph.D., is an assistant professor of medicine in the division of cardiology, and serves as Director of the Laboratory of Cardiovascular Biochemistry at the Johns Hopkins University School of Medicine.


    view more

    Research Areas: proteomics, protein biochemistry, heart failure, cardiology, cardiac preconditioning, cardiomyopathy
  • Green Lab

    Lab Website

    Work in the Green Lab is centered on the ribosome. The overall fidelity of protein synthesis ap...pears to be limited by the action of the ribosome, which is the two-subunit macromolecular machine responsible for decoding and translating messenger RNAs (mRNAs) into protein in all organisms. Our work is divided into four general project areas. The longest-standing research area concerns the interactions of eubacterial ribosomes and release factors. The goal is to understand the mechanism of action of release factors on the ribosome. A second research area involves biochemical and structure/function studies of the miRNA pathway, particularly the mechanism of action of the Argonaute proteins and their interacting factors. A third area of work in the lab is centered around regulation of eukaryotic translation, specifically in understanding the mechanism behind various mRNA quality control pathways and the interactions of proteins therein, as well as with the ribosome. The newest area of research in the lab extends our strengths in ribosome biochemistry to characterize the translation status of the cell using the ribosome profiling. We are using this technique to better understand the role of several factors involved in eukaryotic and prokaryotic translation fidelity. view more

    Research Areas: biochemistry, genomics, ribosome, RNA
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
Create lab profile
Edit lab profile
back to top button