Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 4 of 4 results for precision medicine

Show: 10 · 20 · 50

  1. 1
  • Ashikaga Lab

    We specialize in unconventional, multi-disciplinary approaches to studying the heart at the intersection of applied mathematics, physics and computer science. We focus on theory development that leads to new technology and value delivery to the society. Currently we have three research programs:

    1. Precision Medicine
    To develop a quantitative approach to personalized risk assessment for stroke and dementia based on patent-specific heart anatomy, function and blood flow.
    Disciplines: Cardiac Hemodynamics; Medical Imaging Physics; Continuum Mechanics; Computational Fluid Dynamics

    2. Information Theory
    To quantify and perturb cardiac fibrillation that emerges as a macro-scale behavior of the heart from micro-scale behaviors of inter-dependent components.
    Disciplines: Cardiac Electrophysiology; Spiral Wave; Information Theory; Complex Networks

    3. Artificial Intelligence
    To develop artificial intelligence algorithms to predict the future risk of heart attack, stroke and sudden... death, and to assist surgical interventions to prevent these outcomes.
    Disciplines: Medical Imaging Physics; Artificial Intelligence; Robotically Assisted Interventions
    view more

    Research Areas: complex systems, Computational Fluid Dynamics, spiral wave, artificial intelligence, informational theory

  • Radiopharmaceutical Therapy and Dosimetry Lab

    The Radiopharmaceutical Therapy and Dosimetry (RTD) Lab has two missions: 1. Support clinical Radiopharmaceutical Therapy (RPT) trials by performing patient-specific dosimetry and developing novel methods that advance this field and illustrate the impact of a precision medicine approach to implementing treatment planning in RPT. This includes radiobiological modeling and microscale dosimetry calculations for alpha-particle emitter RPT. 2. Pre-clinical studies using novel alpha-emitter RPT agents with immune intact transgenic animal models that incorporate modeling and dosimetry to support the translation of novel targeted radionuclide therapy strategies to the clinic. In particular, identifying how to best combine RPT with complementary orthogonal-modality agents while also obtaining a basic understanding of how the treatment works and which variables have the greatest impact on efficacy and toxicity. The underlying objective is to utilize pre-clinical modeling and dosimetry to help id...entify an optimal therapeutic clinical trial design so as to reduce unnecessary human experimentation. view more

    Research Areas: radiopharmaceutical therapy, breast cancer, pre-clincial transgenic mouse models, mathematical modeling of pharmacokinetics and treatment response, targeted alpha-particle emitter therapy

    Principal Investigator

    George Sgouros, Ph.D.

    Department

    Radiology

  • Seth Martin Lab

    Dr. Martin's research is focused on rapid generation of new knowledge through clinical studies that can be brought back to the bedside to directly inform the care of patients with advanced lipid disorders and those in need of state-of-the-art comprehensive CV prevention. Members of his lab commit to complete ownership of their project, unwavering pursuit of excellence, and thrive on multidisciplinary teamwork. Active projects include the Very Large Database of Lipids, CASCADE FH Registry, MiCORE (Myocardial infarction, COmbined device, Recovery Enhancement), Google Health Search Trial, and mActive-Smoke.

    For more information, please visit the Ciccarone Center.

    Research Areas: digital and mobile health, atherosclerosis, lipidology, precision medicine, myocardial infarction

    Principal Investigator

    Seth Martin, M.D., M.H.S.

    Department

    Medicine

  • The Bigos Lab

    The Bigos Lab focuses on a Precision Medicine approach to the treatment of psychiatric illness. In addition, this lab employs functional neuroimaging and genetics as biomarkers in neuropsychiatric drug development. A recent study used functional MRI to test the neural effects of a drug with the potential to treat cognitive dysfunction in schizophrenia. Other studies aim to identify patient-specific variables including sex, race, and genetics that impact drug clearance and clinical response to better select and dose antipsychotics and antidepressants.

    Research Areas: cognition, brain disorders, schizophrenia, mental illness, fMRI, pharmacogenomics, neuroimaging

  1. 1