Research Lab Results for physiology
-
Michael Wolfgang Laboratory
The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and ...glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.
Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology
We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.
Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal behavior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation. view more -
Nicholas Dalesio Lab
Research in the Nicholas Dalesio Lab is currently examining pre-surgical predictors of post-sur...gical respiratory complications in children with obstructive sleep apnea and sleep-disordered breathing; the impact of anesthesia and pharmacological agents on upper airway physiology; and techniques for pediatric airway imaging. view more
Research Areas: children, respiratory system, obstructive sleep apnea, anesthesia, pediatrics, sleep disorders -
Ocular Motor Physiology Laboratory
Lab WebsiteOur research is directed toward how the brain controls the movements of the eyes (including eye... movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.
Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular
Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent diplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
view more -
O'Rourke Lab
Lab WebsiteThe O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac ...cells in normal and diseased states.
Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells
Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.
We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole.
Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.
The motivation for all of the work is to understand
• how the molecular details of the heart cell work together to maintain function and
• how the synchronization of the parts can go wrong
Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.
Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University. view more -
Peter van Zijl Laboratory
Lab WebsiteThe Peter van Zijl Laboratory focuses on developing new methodologies for using MRI and magneti...c resonance spectroscopy (MRS) to study brain function and physiology. In addition, we are working to understand the basic mechanisms of the MRI signal changes measured during functional MRI (fMRI) tests of the brain. We are also mapping the wiring of the brain (axonal connections between the brains functional regions) and designing new technologies for MRI to follow where cells are migrating and when genes are expressed. A more recent interest is the development of bioorganic biodegradable MRI contrast agents. Our ultimate goal is to transform these technologies into fast methods that are compatible with the time available for multi-modal clinical diagnosis using MRI. view more
Research Areas: brain, magnetic resonance spectroscopy, MRI -
Platelet Physiology Research Lab
Dr. Williams' research focuses on platelet physiology particularly as it relates to acute coron...ary syndromes and depression. Her laboratory specifically examines platelet aggregation, flow cytometric analysis to measure platelet activation, platelet luminescence as a measure of the platelet release reaction, many Elisa preparations in order to measure platelet function, platelet genotyping to determine the presence of certain platelet polymorphisms, and various other assays to distinguish mechanisms of platelet dysfunction. The goal for her cardiovascular platelet laboratory is to identify the etiology of platelet dysfunction in many disease states and apply methods that may improve this dysfunction that can eventually be translated to therapies for patients with cardiovascular disease. Scientific techniques performed in the lab include: flow cytometric analysis, platelet microparticle identification, and protein immunoprecipitation among other techniques. view more
Research Areas: platelets, Platelet drug response, Platelet Flow cytometric analysis, Platelet Aggregation -
Pluznick Lab
Lab WebsiteThe Pluznick Lab is interested in the role that chemosensation plays in regulating physiologica...l processes, particularly in the kidney and the cardiovascular system. We have found that sensory receptors (olfactory receptors, taste receptors, and other G-protein coupled receptors) are expressed in the kidney and in blood vessels, and that individual receptors play functional roles in whole-animal physiology. We are currently working to identify the full complement of sensory receptors found in the kidney, and are working to understand the role that each receptor plays in whole-animal physiology by using a variety of in vitro (receptor localization, ligand screening) and in vivo (whole-animal physiology) techniques. view more
Research Areas: sensory receptors, cardiovascular, physiology, chemosensation, renal -
Robert H. Brown Lab
Lab WebsiteWork in the Robert H. Brown Lab explores several topics within pulmonary physiology, with a lon...g-term goal of understanding the structural changes in the lungs that lead to the pathophysiology of lung disease. Our core studies examine the structure-function relationship of pulmonary airways and vessels as well as their role in chronic obstructive pulmonary disease (COPD) and reactive airway disease. Recent research has involved studying the mechanisms and treatment of COPD progression, new methods for treating asthma, and lung inflation and airway hyperresponsiveness. We are also exploring the impact of HIV infection on the etiology of lung disease and the pathophysiologic consequences of lung distention. view more
Research Areas: asthma, HIV, pulmonary physiology, lung disease, COPD, reactive airway disease