Skip Navigation

Find a Research Lab

Research Lab Results for physiology

Displaying 11 to 20 of 30 results
Results per page:
  • Joel Pomerantz Laboratory

    The Pomerantz Laboratory studies the molecular machinery used by cells to interpret extracellul...ar signals and transduce them to the nucleus to affect changes in gene expression. The accurate response to extracellular signals results in a cell's decision to proliferate, differentiate or die, and it's critical for normal development and physiology. The dysregulation of this machinery underlies the unwarranted expansion or destruction of cell numbers that occurs in human diseases like cancer, autoimmunity, hyperinflammatory states and neurodegenerative disease.

    Current studies in the lab focus on signaling pathways that are important in innate immunity, adaptive immunity and cancer, with particular focus on pathways that regulate the activity of the pleiotropic transcription factor NF-kB.
    view more

    Research Areas: immunology, neurodegenerative disorders, cancer, autoimmune, hyperinflammatory states, molecular biology
  • Lamichhane Lab

    Lab Website
    Principal Investigator:
    Gyanu Lamichhane, Ph.D.
    Medicine

    Our research focuses on the biology of the peptidoglycan of Mycobacterium tuberculosis, the org...anism that causes tuberculosis, and Mycobacteroides abscessus, a related bacterium that causes opportunistic infections. We study basic mechanisms associated with peptidoglycan physiology but with an intent to leverage our findings to develop tools that will be useful in the clinic to treat mycobacterial infections.

    Peptidoglycan is the exoskeleton of bacteria that not only provides structural rigidity and cell shape but also several vital physiological functions. Breaching this structure is often lethal to bacteria. We are exploring fundamental mechanisms by which bacteria synthesize and preserve their peptidoglycan. Although our lab uses genetic, biochemical and biophysical approaches to study the peptidoglycan, we pursue questions irrespective of the expertise required to answer those questions. It is through these studies that we identified synergy between two beta-lactam antibiotics against select mycobacteria.
    view more

    Research Areas: biochemistry, infectious disease, Mycobacterium tuberculosis, genomics, tuberculosis, RNA
  • Mark Donowitz Lab

    Lab Website
    Principal Investigator:
    Mark Donowitz, M.D.
    Medicine

    Research in the Mark Donowitz Lab is primarily focused on the development of drug therapy for d...iarrheal disorders, intestinal salt absorption and the proteins involved including their regulation, and the use of human enteroids to understand intestinal physiology and pathophysiology. We study two gene families initially recognized by this laboratory: mammalian Na/H exchangers and the subgroup of PDZ domain containing proteins present in the brush border of epithelial cells called NHERF family. A major finding is that NHE3 exists simultaneously in different sized complexes in the brush border, which change separately as part of signal transduction initiated by mimics of the digestive process. Relevance to the human intestine is being pursued using mini-human intestine made from Lgr5+ stems cells made from intestinal biopsies and measuring function via two-photon microscopy. view more

    Research Areas: gastrointestinal system, gastroenterology, pathophysiology, diarrhea, drugs, physiology
  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and ...glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.

    We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.

    Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal behavior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation.
    view more

    Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology
  • Neurosurgery Spinal Research Lab

    Lab Website

    The Spinal Research Laboratory is the world’s leading research lab dedicated to animal models o...f spinal conditions. Our goal is to improve care and surgical outcomes for patients with spinal problems. Using novel models and techniques, our investigators have created new ways to study tumors of the spinal cord and spinal column, spinal paralysis and spinal fusion physiology. In addition, they consistently test spinal devices for effectiveness. view more

    Research Areas: spinal tumors, spine surgery, spine
  • Nicholas Dalesio Lab

    Research in the Nicholas Dalesio Lab is currently examining pre-surgical predictors of post-sur...gical respiratory complications in children with obstructive sleep apnea and sleep-disordered breathing; the impact of anesthesia and pharmacological agents on upper airway physiology; and techniques for pediatric airway imaging. view more

    Research Areas: children, respiratory system, obstructive sleep apnea, anesthesia, pediatrics, sleep disorders
  • Ocular Motor Physiology Laboratory

    Lab Website

    Our research is directed toward how the brain controls the movements of the eyes (including eye... movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.

    Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent diplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
    view more

    Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular
  • O'Rourke Lab

    Lab Website
    Principal Investigator:
    Brian O'Rourke, Ph.D.
    Medicine

    The O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac ...cells in normal and diseased states.

    Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.

    We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole.

    Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.

    The motivation for all of the work is to understand
    • how the molecular details of the heart cell work together to maintain function and
    • how the synchronization of the parts can go wrong

    Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.

    Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University.
    view more

    Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells
  • Peter van Zijl Laboratory

    Lab Website

    The Peter van Zijl Laboratory focuses on developing new methodologies for using MRI and magneti...c resonance spectroscopy (MRS) to study brain function and physiology. In addition, we are working to understand the basic mechanisms of the MRI signal changes measured during functional MRI (fMRI) tests of the brain. We are also mapping the wiring of the brain (axonal connections between the brains functional regions) and designing new technologies for MRI to follow where cells are migrating and when genes are expressed. A more recent interest is the development of bioorganic biodegradable MRI contrast agents. Our ultimate goal is to transform these technologies into fast methods that are compatible with the time available for multi-modal clinical diagnosis using MRI. view more

    Research Areas: brain, magnetic resonance spectroscopy, MRI
  • Platelet Physiology Research Lab

    Principal Investigator:
    Marlene Williams, M.D.
    Medicine

    Dr. Williams' research focuses on platelet physiology particularly as it relates to acute coron...ary syndromes and depression. Her laboratory specifically examines platelet aggregation, flow cytometric analysis to measure platelet activation, platelet luminescence as a measure of the platelet release reaction, many Elisa preparations in order to measure platelet function, platelet genotyping to determine the presence of certain platelet polymorphisms, and various other assays to distinguish mechanisms of platelet dysfunction. The goal for her cardiovascular platelet laboratory is to identify the etiology of platelet dysfunction in many disease states and apply methods that may improve this dysfunction that can eventually be translated to therapies for patients with cardiovascular disease. Scientific techniques performed in the lab include: flow cytometric analysis, platelet microparticle identification, and protein immunoprecipitation among other techniques. view more

    Research Areas: platelets, Platelet drug response, Platelet Flow cytometric analysis, Platelet Aggregation
  1. 1
  2. 2
  3. 3
Create lab profile
Edit lab profile
back to top button