Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 33 results for physiology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  • Anderson Lab

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cause heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets a...ppear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view less

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death

    Lab Website

    Principal Investigator

    Mark Anderson, M.D., Ph.D.

    Department

    Medicine

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis and particularly the pathogenesis of nasal polyps.  Diverse techniques in molecular biology, immunology, physiology, and engineering are utilized to study epithelial cell innate immunity, olfactory loss, the sinus microbiome, and drug delivery to the nose and sinus cavities. Ongoing work explores how epithelial cells participate in the immune response and contribute to chronic sinonasal inflammation. The lab creates and employs transgenic mouse models of chronic sinusitis to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and rhinovirus, and with the University of Maryland to characterize the bacterial microbiome of the nose and sinuses in health and disease.

    Research Areas: nasal polyps, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, molecular biology

  • Cammarato Lab

    The Cammarato Lab is located in the Division of Cardiology in the Department of Medicine at the Johns Hopkins University School of Medicine. We are interested in basic mechanisms of striated muscle biology.

    We employ an array of imaging techniques to study “structural physiology” of cardiac and skeletal muscle. Drosophila melanogaster, the fruit fly, expresses both forms of striated muscle and benefits greatly from powerful genetic tools. We investigate conserved myopathic (muscle disease) processes and perform hierarchical and integrative analysis of muscle function from the level of single molecules and macromolecular complexes through the level of the tissue itself.

    Anthony Ross Cammarato, MD, is an assistant professor of medicine in the Cardiology Department. He studies the identification and manipulation of age- and mutation-dependent modifiers of cardiac function, hierarchical modeling and imaging of contractile machinery, integrative analysis of striated muscle performan...ce and myopathic processes. view more

    Research Areas: muscle development, genetics, myopathic processes, striated muscle biology, muscle function, myopathy, muscle physiology

    Lab Website

    Principal Investigator

    Anthony Cammarato, Ph.D.

    Department

    Medicine

  • David Feller-Kopman Lab

    Research interests in the David Feller-Kopman Lab include improving the multidisciplinary treatment of patients with complex airway disease, investigating the physiology and pathophysiology of non-malignant central airway obstruction and pleural disease, and developing novel methods to teach procedural skills.

    Research Areas: medical education, non-malignant central airway obstruction, pathophysiology, physiology, COPD

    Principal Investigator

    David Feller-Kopman, M.D.

    Department

    Medicine

  • David Shade Lab

    Areas of research in the David Shade Lab include data-management methods for clinical research, design and conduct of clinical trials, and internet usage for data acquisition and distribution.

    Research Areas: data analysis, asthma, clinical trials, pulmonary physiology

    Principal Investigator

    David Shade, J.D.

    Department

    Medicine

  • Dwight Bergles Laboratory

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Dwight Bergles, Ph.D.

    Department

    Neuroscience

  • Fu Lab

    The Fu Lab is a basic research lab that studies zinc transport, with a particular focus on which step in the zinc transport process may be modulated and how. Dr. Fu's lab uses parallel cell biology and proteomic approaches to understand how these physiochemical principles are applied to mammalian zinc transporters and integrated to the physiology of pancreatic beta cells. This research has implications for understanding how zinc transport is related to diabetes and insulin intake.

    Research Areas: cell biology, proteomics, zinc, pancreatic cells, diabetes

    Lab Website

    Principal Investigator

    Dax Fu, Ph.D.

    Department

    Physiology

  • Holland Lab

    Research in the Holland Lab focuses on the molecular mechanisms that control accurate chromosome distribution and the role that mitotic errors play in human health and disease. We use a combination of chemical biology, biochemistry, cell biology and genetically engineered mice to study pathways involved in mitosis and their effect on cell and organism physiology. One of our major goals is to develop cell and animal-based models to study the role of cell-division defects in genome instability and tumorigenesis.

    Research Areas: cancer, genomics, molecular biology

  • Human Brain Physiology and Stimulation Lab

    The Human Brain Physiology and Stimulation Laboratory studies the mechanisms of motor learning and develops interventions to modulate motor function in humans. The goal is to understand how the central nervous system controls and learns to perform motor actions in healthy individuals and in patients with neurological diseases such as stroke. Using this knowledge, we aim to develop strategies to enhance motor function in neurological patients.

    To accomplish these interests, we use different forms of non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), as well as functional MRI and behavioral tasks.

    Research Areas: motor learning, TMS, brain stimulation, neurologic rehabilitation, tDCS, stroke rehabilitation, stroke recovery

  • J. Hunter Young Lab

    Research in the J. Hunter Young Lab focuses on the genetic epidemiology and physiology of cardiovascular disease and its risk factors, especially hypertension, diabetes and obesity. Current activities include an observational study of hypertension among African Americans; a genetic epidemiology study of worldwide cardiovascular disease susceptibility patterns; and several population-based observational studies of cardiovascular and renal disease. A recent focus group study found that changes in housing and city policies might lead to improved environmental health conditions for public housing residents.

    Research Areas: epidemiology, kidney diseases, obesity, hypertension, diabetes, genomics, physiology, cardiovascular diseases

    Principal Investigator

    Jeffery Young, M.D., M.H.S.

    Department

    Medicine

  1. 1
  2. 2
  3. 3
  4. 4