Skip Navigation

Find a Research Lab

Research Lab Results for pathophysiology

Displaying 11 to 14 of 14 results
Results per page:
  • Martin G. Pomper Lab

    Lab Website
    Principal Investigator:
    Martin Pomper, M.D., Ph.D.
    Fisher Center for Environmental Infectious Diseases

    Recent advances in molecular and cellular biology, the emergence of more sophisticated animal models of human disease and the development of sensitive, high-resolution imaging systems enable the study of pathophysiology noninvasively in unprecedented detail. The overall goal of our work is to develop new techniques and agents to study human disease through imaging. We concentrate on two areas, i.e., cancer and central nervous system processes. Our work extends from basic chemical and radiochemical synthesis to clinical translation.

    Research Areas: imaging, cancer
  • Robert H. Brown Lab

    Lab Website

    Work in the Robert H. Brown Lab explores several topics within pulmonary physiology, with a long-term goal of understanding the structural changes in the lungs that lead to the pathophysiology of lung disease. Our core studies examine the structure-function relationship of pulmonary airways and vessels as well as their role in chronic obstructive pulmonary disease (COPD) and reactive airway disease. Recent research has involved studying the mechanisms and treatment of COPD progression, new methods for treating asthma, and lung inflation and airway hyperresponsiveness. We are also exploring the impact of HIV infection on the etiology of lung disease and the pathophysiologic consequences of lung distention.

    Research Areas: asthma, HIV, pulmonary physiology, lung disease, COPD, reactive airway disease
  • Seth Margolis Laboratory

    Principal Investigator:
    Seth Margolis, Ph.D.
    Research Animal Resources

    The Seth Margolis Laboratory studies the signaling pathways that regulate synapse formation during normal brain development to try to understand how, when these pathways go awry, human cognitive disorders develop.

    We use Ephexin5 to study the molecular pathways that regulate restriction of excitatory synapse formation and their relevance to the pathophysiology of Angelman syndrome.

    Research Areas: cognition, Angelman syndrome, human development, cellular signaling, synapse formation
  • Steven Claypool Lab

    Lab Website
    Principal Investigator:
    Steven Claypool, Ph.D.
    Nephrology

    Research in the Claypool Lab is focused on defining how lipids and membrane proteins interact to establish and maintain normal mitochondrial function and how derangements in this complex relationship result in pathophysiology. We have demonstrated that yeast lacking tafazzin recapitulates all of the phospholipid abnormalities observed in human patients and many of the mitochondrial defects.

    Another major project in our lab focuses on the mitochondrial ADP/ATP carrier that is required for oxidative phosphorylation. Researchers are studying how these novel interactions help establish normal mitochondrial function, the biochemical details of these associations, and whether disturbances in these assemblies can contribute to mitochondrial dysfunction.

    Research Areas: biochemistry, proteomics, lipids, yeast, mitochondria, oxidative phosphorylation
  1. 1
  2. 2
Create lab profile
Edit lab profile
back to top button