Skip Navigation

Find a Research Lab

Research Lab Results for pathogenesis

Displaying 1 to 36 of 36 results
Results per page:
  • Alison Moliterno Lab

    Principal Investigator:
    Alison Moliterno, M.D.
    Medicine

    The Alison Moliterno Lab studies the molecular pathogenesis of myeloproliferative disorders (MP...Ds), including polycythemia vera, essential thrombocytosis and idiopathic myelofibrosis. Our research is focused on the genetic and epigenetic lesions associated with MPDs, with the goal of improving diagnosis and treatment for these disorders. view more

    Research Areas: blood disorders, idiopathic myelofibrosis, essential thrombocytosis, epigenetics, genomics, polycythemia vera, myeloproliferative disorders
  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosi...nusitis, particularly the pathogenesis of nasal polyps, as well as inflammation on the olfactory epithelium. Diverse techniques in molecular biology, immunology, and physiology are utilized to study epithelial cell innate immunity, olfactory loss, and response to viral infection. Ongoing work explores how epithelial cells of the sinuses and olfactory mucosa participate in the immune response and contribute to chronic inflammation. The lab creates and employs transgenic mouse models of chronic nasal/sinus inflammation to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and COVID-19. view more

    Research Areas: nasal polyps, immunology, COVID-19, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, neuroscience, molecular biology
  • Bert Vogelstein Laboratory

    Lab Website
    Principal Investigator:
    Bert Vogelstein, M.D.
    Oncology

    The Bert Vogelstein Laboratory seeks to develop new approaches to the prevention or treatment o...f cancers through a better understanding of the genes and pathways underlying their pathogenesis.

    Our major focus is on cancers of the colon and rectum. We have shown that each colon neoplasm arises from a clonal expansion of one transformed cell. This expansion gives rise to a small benign colon tumor (called a polyp or adenoma). This clonal expansion and subsequent growth of the tumors appears to be caused by mutations in oncogenes and tumor suppressor genes, and the whole process is accelerated by defects in genes required for maintaining genetic instability. Mutations in four or five such genes are required for a malignant tumor to form, while fewer mutations suffice for benign tumorigenesis. As the mutations accumulate, the tumors become progressively more dangerous.

    Current studies are aimed at the further characterization of the mechanisms through which these genes act, the identification of other genes that play a role in this tumor type, and the application of this knowledge to patient management.
    view more

    Research Areas: rectal cancer, colon cancer, genomics, pathogenesis
  • Brain Tumor Cancer Genetics Lab

    Lab Website

    The lab explores the genetic underpinnings that drive the pathogenesis of a variety of primary ...central nervous system neoplasms. We are interested in exploiting genetic changes for both diagnostic and therapeutic purposes. Our lab is currently working on understanding the extreme responders and extreme clinical phenotypes of brain and spinal cord tumors to identify factors that may modulate responses to therapy. view more

    Research Areas: brain tumor genetics, brain tumor
  • Brendan Cormack Laboratory

    The Brendan Cormack Laboratory studies fungal pathogenesis, particularly the host-pathogen inte...raction for the yeast pathogen Candida glabrata.

    We are trying to identify virulence genes (genes that evolved in response to the host environment) by screening transposon mutants of C. glabrata for mutants that are specifically altered in adherence to epithelial cells, in survival in the presence of macrophages and PMNs. We also screen mutants directly in mice for those unable to colonize or persist in the normal target organs (liver, kidney and spleen).

    We also focus research on a family of genes--the EPA genes--that allow the organism to bind to host cells. Our research shows that a subset of them are able to mediate adherence to host epithelial cells. We are trying to understand the contribution of this family to virulence in C. glabrata by figuring out what the ligand specificity is of different family members, how genes are normally regulated during infection, and what mechanisms normally act to keep the genes transcriptionally silent and how that silence is regulated.
    view more

    Research Areas: candida glabrata, pathogenesis, virulence genes, yeast, molecular biology
  • David Graham Lab

    Principal Investigator:
    David Graham, Ph.D., M.S.
    Molecular and Comparative Pathobiology

    The David Graham Lab studies the consequences of HIV interactions with the immune system, the r...esulting pathogenesis and how to sabotage these interactions. We apply advanced technologies like mass spectrometry to dissect processes at the molecular level. We are also actively involved in cardiovascular research and studies the ways proteins are organized into functional units in different cell types of the heart.

    Major projects in our lab are organized into three major areas: (1) H/SIV pathogenesis and neuropathogenesis, (2) Cardiovascular disease, and (3) High technology development
    view more

    Research Areas: immunology, mass spectrometry, HIV, cardiovascular, SIV, pathogenesis
  • David Thomas Lab

    Principal Investigator:
    David Thomas, M.D., M.P.H.
    Medicine

    The David Thomas Lab oversees clinical research projects that aim to understand the natural his...tory and pathogenesis of hepatitis C virus infection. A special area of clinical and research focus is liver disease in HIV-infected people. view more

    Research Areas: HIV, hepatitis C, liver diseases
  • Diane Griffin Lab

    Principal Investigator:
    M. Griffin, M.D., Ph.D.
    Medicine

    Research in the Diane Griffin Lab focuses on the viral, cellular and immunologic determinants o...f diseases caused by alphaviruses and the measles virus. Our current studies aim to understand the immune-system mechanisms behind viral clearance and disease enhancement. Our team is also working to understand the pathogenesis of the measles virus, with a focus on developing new vaccines and learning how the virus induces immunosuppression. view more

    Research Areas: immunology, vaccines, measles, alphavirus, encephalitis
  • Douglas Ball Lab

    Principal Investigator:
    Douglas Ball, M.D.
    Medicine

    The Douglas Ball Lab conducts clinical trials and pre-clinical laboratory studies of thyroid ca...ncer. Our clinical trials, performed in collaboration with research staff in the upper aero-digestive group in the Sidney Kimmel Comprehensive Cancer Center, have included protocols for advanced radioiodine-refractory differentiated thyroid cancer and medullary thyroid cancer. Our pre-clinical research, conducted with Dr. Nelkin, Dr. Agrawal and other Kimmel Cancer Center researchers, includes pathogenesis and mechanisms of treatment resistance in medullary thyroid cancer, and pathogenesis and immune-directed therapy of anaplastic thyroid cancer. view more

    Research Areas: thyroid cancer, medullary thyroid cancer, cancer, anaplastic thyroid cancer
  • Fuchs Laboratory

    Lab Website

    The Fuchs Laboratory uses cellular electrophysiology, immunolabeling and electron microscopy to... study synaptic connections between sensory hair cells and neurons in the cochlea. One effort focuses on an unusual cholinergic receptor that mediates efferent inhibition of hair cells, driving discovery of the molecular mechanisms, and offering a target for protection against acoustic trauma. A second topic concerns the small number of unmyelinated "type II" afferent neurons whose synaptic connectivity and response properties argue for a role as the pathway for noxious (too loud) sound. Our studies are motivated by curiosity about fundamental mechanisms, and to provide a foundation for understanding cochlear pathogenesis. view more

    Research Areas: synaptic connections, immunolabeling, neurons, elecrophysiology, audiology, cellular electrophysiology, hearing loss, electron microscopy, cochlea, cochlear pathogensesis
  • Hamid Rabb Lab

    Principal Investigator:
    Hamid Rabb, M.D.
    Medicine

    Dr. Rabb’s lab is involved in translational research aimed at understanding the molecular patho...genesis of kidney ischemia/reperfusion injury. The lab is interested in the development of novel treatments for kidney IRI. view more

    Research Areas: kidney diseases, kidney ischemia/reperfusion injuries, nephrology
  • IBD and Autoimmune Liver Diseases Laboratory

    Principal Investigator:
    Xu Li, Ph.D.
    Medicine

    Investigators in the IBD and Autoimmune Liver Diseases Laboratory conduct basic and translation...al research in inflammatory bowel disease (IBD) and autoimmune liver diseases. One area of focus is discovering and developing biomarkers for diagnosing and prognosticating IBD and other autoimmune liver diseases (AILDs). We also are exploring the molecular pathogenesis of—and developing novel therapies for—IBD. In addition, we are working to understand the molecular reason why many IBD patients fail to respond to mainstay drug therapies—and to develop diagnostic assays that can predict non-responders before starting them on those therapies. These biomarker studies have led to our application for four U.S. and international patents. view more

    Research Areas: inflammatory bowel disease, Crohn’s disease, gastrointestinal system, colitis, autoimmune diseases, pathogenesis, celiac disease, liver diseases
  • J. Marie Hardwick Laboratory

    Lab Website

    Our research is focused on understanding the basic mechanisms of programmed cell death in disea...se pathogenesis. Billions of cells die per day in the human body. Like cell division and differentiation, cell death is also critical for normal development and maintenance of healthy tissues. Apoptosis and other forms of cell death are required for trimming excess, expired and damaged cells. Therefore, many genetically programmed cell suicide pathways have evolved to promote long-term survival of species from yeast to humans. Defective cell death programs cause disease states. Insufficient cell death underlies human cancer and autoimmune disease, while excessive cell death underlies human neurological disorders and aging. Of particular interest to our group are the mechanisms by which Bcl-2 family proteins and other factors regulate programmed cell death, particularly in the nervous system, in cancer and in virus infections. Interestingly, cell death regulators also regulate many other cellular processes prior to a death stimulus, including neuronal activity, mitochondrial dynamics and energetics. We study these unknown mechanisms.

    We have reported that many insults can trigger cells to activate a cellular death pathway (Nature, 361:739-742, 1993), that several viruses encode proteins to block attempted cell suicide (Proc. Natl. Acad. Sci. 94: 690-694, 1997), that cellular anti-death genes can alter the pathogenesis of virus infections (Nature Med. 5:832-835, 1999) and of genetic diseases (PNAS. 97:13312-7, 2000) reflective of many human disorders. We have shown that anti-apoptotic Bcl-2 family proteins can be converted into killer molecules (Science 278:1966-8, 1997), that Bcl-2 family proteins interact with regulators of caspases and regulators of cell cycle check point activation (Molecular Cell 6:31-40, 2000). In addition, Bcl-2 family proteins have normal physiological roles in regulating mitochondrial fission/fusion and mitochondrial energetics to facilitate neuronal activity in healthy brains.
    view more

    Research Areas: cell death
  • James Hamilton Lab

    Principal Investigator:
    James Hamilton, M.D.
    Medicine

    The main research interests of the James Hamilton Lab are the molecular pathogenesis of hepatoc...ellular carcinoma and the development of molecular markers to help diagnose and manage cancer of the liver. In addition, we are investigating biomarkers for early diagnosis, prognosis and response to various treatment modalities. Results of this study will provide a molecular classification of HCC and allow us to identify targets for chemoprevention and treatment. Specifically, we extract genomic DNA and total RNA from liver tissues and use this genetic material for methylation-specific PCR (MSP), cDNA microarray, microRNA microarray and genomic DNA methylation array experiments. view more

    Research Areas: Copper homeostasis, Wilson's disease, cancer, molecular genetics, Early detection biomarker discovery for hepatocellular carcinoma, genomics, pathogenesis, liver injury, liver diseases, regulation of lipid metabolism, hepatocellular carcinoma, Pathogenesis of Liver fibrosis and cancer
  • Jean Kim Lab

    The Jean Kim Laboratory performs translational research in the
    area of chronic rhinosinusitis,... with a niche interest in the pathogenesis of hyperplastic nasal
    polyposis. Studies encompass clinical research to basic wet laboratory research in
    studying the underlying immune and autoimmune mediated mechanism of polyp growth and
    perpetuation of disease. Human cell and tissue culture models are used. Techniques in the
    laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry,
    immunohistochemistry, electron microscopy, gene array analysis, and other molecular
    approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study
    designs include prospective and retrospective analysis of patient outcomes and clinical
    biomarkers, as wells controlled clinical trials.
    view more

    Research Areas: nasal polyps, chronic rhinosinusitis, hyperplastic nasal polyposis
  • Jerry Spivak Lab

    Principal Investigator:
    Jerry Spivak, M.D.
    Medicine

    Research in the Jerry Spivak Lab focuses on chronic myeloproliferative disorders, particularly ...their molecular mechanisms and methods for distinguishing them diagnostically and interventionally. By analyzing gene expression in polycythemia vera stem cells, we have learned that patients with polycythemia vera can be differentiated from those with erythrocytosis and can be diagnosed as having either aggressive or slow-growing disease. We are also studying the roles played by specific molecular markers in the pathogenesis and diagnosis of polycythemia vera. view more

    Research Areas: stem cells, pathogenesis, polycythemia vera, myeloproliferative disorders
  • Laboratory of Airway Immunity

    We are interested in understanding how innate immune responses regulate lung health. Innate imm...unity involves ancient, and well-conserved mediators and their actions regulate the balance between homeostasis and pathogenesis. In the lungs, innate immunity play a critical role in response to environmental exposures such as allergen and ambient particulate matter. My lab focuses on how these exposures can promote aberrant mucosal responses that can drive the development of diseases like asthma. view more

    Research Areas: allergy, type 2 immunity, asthma, particulate matter, allergens, innate immunity
  • Michael B. Streiff Lab

    Principal Investigator:
    Michael Streiff, M.D.
    Medicine

    The Michael B. Streiff Lab conducts clinical and laboratory research of thrombophilia associate...d with malignancy. We are interested in the application of novel coagulation assays to explore the pathogenesis of thrombosis and the development of strategies to enhance the clinical management of anti-thrombotic agents. view more

    Research Areas: cancer, thrombophilia
  • Michael Kornberg Lab

    Lab Website

    Our laboratory conducts basic and translational research aimed at better understanding the path...ogenesis of multiple sclerosis (MS) and the role of the immune system in CNS disease, particularly the processes that drive progressive disability such as neurodegeneration and remyelination failure. We currently have three parallel research programs: 1. Metabolism as a modulator of MS: We are studying how basic metabolic pathways regulate the immune system and how these pathways might be exploited to protect neurons and myelin-forming oligodendrocytes from injury. 2. Identifying pathways by which nitric oxide (NO) and other free radicals cause neuronal and axonal damage. Our lab is identifying specific signaling pathways initiated by NO and other free radicals that can be targeted by drugs to produce neuroprotection. 3. Modulating the innate immune system in MS: In collaboration with others at Johns Hopkins, we are studying ways to enhance the reparative functions of microglia while preventing maladaptive responses. This work has identified bryostatin-1 as a potential drug that may be re-purposed for this task. view more

    Research Areas: multiple sclerosis
  • Mohamed Atta Lab

    Dr. Atta and his research team explore the epidemiological and clinical interventions of a vari...ety of kidney diseases. Our goal is not only to advance the understanding of many kidney diseases but also to capitalize on novel discoveries of basic science to treat a wide range of rare and common kidney disorders.




    • Multi-international observational study of a rare form of amyloid (LECT2 amyloid) to understand its natural history with the ultimate interest of treating this condition.

    • Our group has launched a project investigating the impact of COVID19 on the kidney to identify risk factors influencing outcome across different clinical phenotypes

    • In collaboration with the Division of Infectious Diseases and the School of Public Health, our research has focused on the epidemiology of HIV and kidney disease. We also study clinical markers and contributing factors in the progression of kidney disease, and the association between kidney disease and heart disease.

    • Our research group is participating in a multicenter consortium serving as a clinical core site to study the pathogenesis of HIV-associated kidney disease by providing well-characterized clinical specimens and corresponding clinical and laboratory data.

    view more

    Research Areas: kidney diseases, HIV, hepatitis C
  • Neuroimmunopathology Lab

    The research activities of the Neuroimmunopathology Laboratory focus on studies of immunologica...l and molecular mechanisms involved in the pathogenesis of neurological disorders. Our main areas of research include studies of neurological complications of HIV infection and AIDS, multiple sclerosis, transverse myelitis, autism and epilepsy. We seek to explore and identify immunopathological mechanisms associated with neurological disease that may be the target of potential therapeutic interventions. The laboratory collaborates with other researchers and laboratories at Johns Hopkins and other institutions in projects related with studies of the interaction between the immune and central nervous systems in pathological processes leading to neurological dysfunction. view more

    Research Areas: multiple sclerosis, autism, epilepsy, HIV, transverse myelitis
  • Nicola Heller Lab

    Lab Website

    Research in the Nicola Heller Lab focuses on the immunobiology of macrophages. Our team explore...s how these cells impact diseases with an inflammatory element, such as cancer, cardiovascular disease and obesity. Using a variety of techniques, including molecular and cellular biology, biochemistry, mouse models and more, we study the role of IL-4/IL-13 signaling in asthma and allergic disease, as well as the role of alternatively activated macrophages (AAM) in the pathogenesis of allergic inflammation. Currently, we are researching the links between asthma and obesity, with a focus on the roles of gender and race. view more

    Research Areas: asthma, allergies, immunobiology, inflammation, macrophages
  • Pulmonary Infection and Inflammation Research Lab

    Principal Investigator:
    Hongpeng Jia, M.D., M.Sc.
    Surgery

    The Jia lab performs basic and translational research into the mechanisms of and therapeutic st...rategy for viral and bacterial infection-induced inflammatory lung diseases, one of the leading causes of death in pulmonary diseases, especially for the ongoing pandemic of the SARS-CoV-2 mediated COVID-19. Our work has identified novel roles of Angiotensin-converting enzyme 2 (ACE2) in the inflammatory response to viral and bacterial lung infection and its complex contributions into the pathogenesis and disease progression and outcome of COVID-19. In seeking to translate these findings to clinical studies, we have been working on a collaboration with other investigators, developing novel diagnostic, preventive, and therapeutic tools in combating the devastating COVID-19, even in the era of effective vaccine prevention. These studies are funded by NIAID. view more

    Research Areas: RAS, viral and bacterial lung infection, inflammatory lung disease
  • Retinal Cell and Molecular Lab

    Lab Website
    Principal Investigator:
    Peter Campochiaro, M.D.
    Ophthalmology

    The Retinal Cell and Molecular Laboratory has three major areas of interest, each of which deal...s with some aspect of growth factor signaling and function in the retina and retinal pigmented epithelium (RPE): 1. Investigations aimed at gaining a better understanding of the pathogenesis of retinal and choroidal neovascularization and developing new ways to treat them.
    2. Investigations aimed at understanding the molecular signals involved in retinal and RPE wound repair and scarring. The prototypical disease in this category is proliferative vitreoretinopathy and our laboratory is seeking to identify new treatments for it. 3. Investigations aimed at understanding why retinal degenerations occur and how they might be treated, with particular emphasis on neurotrophic factors.
    view more

    Research Areas: choroidal neovascularization, branch retinal vein occlusion, central retinal vein occlusion, diabetic macular edema, gene therapy, ranibizumab
  • Retrovirus Laboratory

    Principal Investigator:
    Janice Clements, Ph.D.
    Molecular and Comparative Pathobiology

    Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of len...tivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.

    Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and pulmonary disease.
    view more

    Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus
  • Richard F. Ambinder Lab

    Lab Website

    Epstein-Barr virus and Kaposi's sarcoma herpesvirus are found in association with a variety of ...cancers. Our laboratory studies are aimed at better defining the role(s) of the virus in the pathogenesis of these diseases and the development of strategies to prevent, diagnose or treat them. We have become particularly interested in the unfolded protein response in activation of latent viral infection. Among the notions that we are exploring is the possibility that activation of virus-encoded enzymes will allow the targeted delivery of radation. In addition, we are investigating a variety of virus-related biomarkers including viral DNA, antibody responses, and cytokine measurements that may be clinically relevant. view more

    Research Areas: virology, antiviral therapy
  • Stivers Lab

    Lab Website

    The Stivers Lab is broadly interested in the biology of the RNA base uracil when it is present ...in DNA. Our work involves structural and biophysical studies of uracil recognition by DNA repair enzymes, the central role of uracil in adapative and innate immunity, and the function of uracil in antifolate and fluoropyrimidine chemotherapy. We use a wide breadth of structural, chemical, genetic and biophysical approaches that provide a fundamental understanding of molecular function. Our long-range goal is to use this understanding to design novel small molecules that alter biological pathways within a cellular environment. One approach we are developing is the high-throughput synthesis and screening of small molecule libraries directed at important targets in cancer and HIV-1 pathogenesis. view more

    Research Areas: biophysics, enzymes, cell biology, uracil, cancer, HIV, DNA, RNA
  • Tamara O'Connor Lab

    The O'Connor Lab studies the molecular basis of infectious disease using Legionella pneumophila... pathogenesis as a model system.

    We are looking at the network of molecular interactions acting at the host-pathogen interface. Specifically, we use L. pneumophila pathogenesis to examine the numerous mechanisms by which an intracellular bacterial pathogen can establish infection, how it exploits host cell machinery to accomplish this, and how individual proteins and their component pathways coordinately contribute to disease.

    We are also studying the role of environmental hosts in the evolution of human pathogens. Using genetics and functional genomics, we compare and contrast the repertoires of virulence proteins required for growth in a broad assortment of hosts, how the network of molecular interactions differs between hosts, and the mechanisms by which L. pneumophila copes with this variation.
    view more

    Research Areas: infectious disease, Legionella pneumophila, genomics, pathogenesis, molecular biology
  • Ted Dawson Laboratory

    Lab Website
    Principal Investigator:
    Ted Dawson, M.D., Ph.D.
    Neurology

    The Ted Dawson Laboratory uses genetic, cell biological and biochemical approaches to explore t...he pathogenesis of Parkinson's disease (PD) and other neurologic disorders. We also investigate several discrete mechanisms involved in cell death, including the role of nitric oxide as an endogenous messenger, the function of poly (ADP-ribose) polymerase-1 and apoptosis inducing factor in cell death, and how endogenous cell survival mechanisms protect neurons from death. view more

    Research Areas: nitric oxide, neuronal signaling, genomics, pathogenesis, Parkinson's disease, cell death
  • The Cihakova Lab

    Lab Website
    Principal Investigator:
    Daniela Cihakova, M.D., Ph.D.
    Pathology

    The Cihakova research laboratory is an immunology laboratory dedicated to the investigation of ...autoimmune diseases. Our most active research is focused on myocarditis and dilated cardiomyopathy. We expanded our interest in inflammatory heart diseases to include the study of immune mechanisms driving pericarditis and myocardial infarction. In addition, we are interested in the pathogenesis of a broad range of autoimmune diseases such as, Sjogren's syndrome, congenital complete heart block, and APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). Through several collaborative projects we also investigate rheumatoid arthritis and the immune components of schizophrenia. view more

    Research Areas: schizophrenia, autoimmune diseases, myocardial infarction, cardiomyopathy
  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    Lab Website
    Principal Investigator:
    David Hackam, M.D., Ph.D.
    Pediatrics
    Surgery

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of ...premature infants and the leading cause of death and disability from gastrointestinal disease in newborns.

    The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome.

    The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant.
    view more

    Research Areas: necrotizing enterocolitis, gut inflammation, stem cell biology, premature infants, TLR4
  • Thomas Grader-Beck Lab

    Principal Investigator:
    Thomas Grader-Beck, M.D., Ph.D.
    Medicine

    Research in the Thomas Grader-Beck Lab aims to understand the pathogenesis of systemic autoimmu...ne diseases—particularly systemic lupus erythematosus (SLE) and Sjögren’s syndrome—by taking a translational approach. Autoantibodies (antibodies that target self-molecules) are believed to contribute significantly to the disease process. We are studying mechanisms that may make self-structures immunogenic. We theorize that certain post-translational antigen modifications, which can occur in infections or malignant transformation, result in the expression of neoepitopes that spread autoimmunity in the proper setting. The team has combined studies that employ a number of mouse strains, certain gene-deficient mice and human biological specimens. view more

    Research Areas: Sjogren's syndrome, antibodies, autoimmune diseases, self-molecules, systemic lupus erythematosus
  • Translational Neurobiology Laboratory

    Lab Website

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and c...ell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases. view more

    Research Areas: Huntington's disease, neurodegenerative disorders, neurobiology, cell biology, Parkinson's disease
  • William Bishai Laboratory

    Lab Website
    Principal Investigator:
    William Bishai, M.D., Ph.D.
    Medicine

    The William Bishai Laboratory studies the molecular pathogenesis of tuberculosis. The overall g...oal of our laboratory is to better understand tuberculosis pathogenesis and then to employ this understanding toward improved drugs, vaccines and diagnostics. Since Mycobacterium tuberculosis senses and adapts to a wide array of conditions during the disease process, it is clear that the regulation of expression of virulence factors plays an important role in pathogenesis. As a result, a theme of our research is to assess mycobacterial genes important in gene regulation. We are also interested in cell division in mycobacteria and the pathogenesis of caseation and cavitation. view more

    Research Areas: vaccines, genomics, drugs, pathogenesis, tuberculosis
  • William G. Nelson Laboratory

    Lab Website
    Principal Investigator:
    William Nelson, M.D., Ph.D.
    Oncology

    Normal and neoplastic cells respond to genome integrity threats in a variety of different ways.... Furthermore, the nature of these responses are critical both for cancer pathogenesis and for cancer treatment. DNA damaging agents activate several signal transduction pathways in damaged cells which trigger cell fate decisions such as proliferation, genomic repair, differentiation, and cell death. For normal cells, failure of a DNA damaging agent (i.e., a carcinogen) to activate processes culminating in DNA repair or in cell death might promote neoplastic transformation. For cancer cells, failure of a DNA damaging agent (i.e., an antineoplastic drug) to promote differentiation or cell death might undermine cancer treatment.

    Our laboratory has discovered the most common known somatic genome alteration in human prostatic carcinoma cells. The DNA lesion, hypermethylation of deoxycytidine nucleotides in the promoter of a carcinogen-defense enzyme gene, appears to result in inactivation of the gene and a resultant increased vulnerability of prostatic cells to carcinogens.
    Studies underway in the laboratory have been directed at characterizing the genomic abnormality further, and at developing methods to restore expression of epigenetically silenced genes and/or to augment expression of other carcinogen-defense enzymes in prostate cells as prostate cancer prevention strategies.

    Another major interest pursued in the laboratory is the role of chronic or recurrent inflammation as a cause of prostate cancer. Genetic studies of familial prostate cancer have identified defects in genes regulating host inflammatory responses to infections.
    A newly described prostate lesion, proliferative inflammatory atrophy (PIA), appears to be an early prostate cancer precursor. Current experimental approaches feature induction of chronic prostate inflammation in laboratory mice and rats, and monitoring the consequences on the development of PIA and prostate cancer.
    view more

    Research Areas: cellular biology, cancer, epigenetics, DNA
  1. 1
Create lab profile
Edit lab profile
back to top button