Skip Navigation

Find a Research Lab

Research Lab Results for pathogenesis

Displaying 31 to 37 of 37 results
Results per page:
  • The Cihakova Lab

    Lab Website
    Principal Investigator:
    Daniela Cihakova, M.D., Ph.D.
    Pathology

    The Cihakova research laboratory is an immunology laboratory dedicated to the investigation of ...autoimmune diseases. Our most active research is focused on myocarditis and dilated cardiomyopathy. We expanded our interest in inflammatory heart diseases to include the study of immune mechanisms driving pericarditis and myocardial infarction. In addition, we are interested in the pathogenesis of a broad range of autoimmune diseases such as, Sjogren's syndrome, congenital complete heart block, and APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). Through several collaborative projects we also investigate rheumatoid arthritis and the immune components of schizophrenia. view more

    Research Areas: schizophrenia, autoimmune diseases, myocardial infarction, cardiomyopathy
  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    Lab Website
    Principal Investigator:
    David Hackam, M.D., Ph.D.
    Pediatrics
    Surgery

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of ...premature infants and the leading cause of death and disability from gastrointestinal disease in newborns.

    The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome.

    The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant.
    view more

    Research Areas: necrotizing enterocolitis, gut inflammation, stem cell biology, premature infants, TLR4
  • The Transplant and Oncology Infectious Diseases (TOID) Center

    Lab Website
    Principal Investigator:
    Kieren Marr, M.D.
    Medicine

    The mission of the Transplant and Oncology Infectious Diseases (TOID) Center is to expand insti...tutional expertise in clinical and academic activities focused on infectious complications in transplant (solid organ and stem cell) and oncology patients at Johns Hopkins medical institutions. Key efforts include developing standardized algorithms for the prevention and treatment of infections in these vulnerable patients and to establish an expanded infrastructure to facilitate clinical and translational studies at TOID. Current research projects focus on diagnostics for invasive fungal infections and specialized studies of the pathogenesis of candidiasis and aspergillosis. view more

    Research Areas: transplants, candidiasis, fungal infections, infectious disease, cancer, aspergillosis
  • Thomas Grader-Beck Lab

    Principal Investigator:
    Thomas Grader-Beck, M.D., Ph.D.
    Medicine

    Research in the Thomas Grader-Beck Lab aims to understand the pathogenesis of systemic autoimmu...ne diseases—particularly systemic lupus erythematosus (SLE) and Sjögren’s syndrome—by taking a translational approach. Autoantibodies (antibodies that target self-molecules) are believed to contribute significantly to the disease process. We are studying mechanisms that may make self-structures immunogenic. We theorize that certain post-translational antigen modifications, which can occur in infections or malignant transformation, result in the expression of neoepitopes that spread autoimmunity in the proper setting. The team has combined studies that employ a number of mouse strains, certain gene-deficient mice and human biological specimens. view more

    Research Areas: Sjogren's syndrome, antibodies, autoimmune diseases, self-molecules, systemic lupus erythematosus
  • Translational Neurobiology Laboratory

    Lab Website

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and c...ell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases. view more

    Research Areas: Huntington's disease, neurodegenerative disorders, neurobiology, cell biology, Parkinson's disease
  • William Bishai Laboratory

    Lab Website
    Principal Investigator:
    William Bishai, M.D., Ph.D.
    Medicine

    The William Bishai Laboratory studies the molecular pathogenesis of tuberculosis. The overall g...oal of our laboratory is to better understand tuberculosis pathogenesis and then to employ this understanding toward improved drugs, vaccines and diagnostics. Since Mycobacterium tuberculosis senses and adapts to a wide array of conditions during the disease process, it is clear that the regulation of expression of virulence factors plays an important role in pathogenesis. As a result, a theme of our research is to assess mycobacterial genes important in gene regulation. We are also interested in cell division in mycobacteria and the pathogenesis of caseation and cavitation. view more

    Research Areas: vaccines, genomics, drugs, pathogenesis, tuberculosis
  • William G. Nelson Laboratory

    Lab Website
    Principal Investigator:
    William Nelson, M.D., Ph.D.
    Oncology

    Normal and neoplastic cells respond to genome integrity threats in a variety of different ways.... Furthermore, the nature of these responses are critical both for cancer pathogenesis and for cancer treatment. DNA damaging agents activate several signal transduction pathways in damaged cells which trigger cell fate decisions such as proliferation, genomic repair, differentiation, and cell death. For normal cells, failure of a DNA damaging agent (i.e., a carcinogen) to activate processes culminating in DNA repair or in cell death might promote neoplastic transformation. For cancer cells, failure of a DNA damaging agent (i.e., an antineoplastic drug) to promote differentiation or cell death might undermine cancer treatment.

    Our laboratory has discovered the most common known somatic genome alteration in human prostatic carcinoma cells. The DNA lesion, hypermethylation of deoxycytidine nucleotides in the promoter of a carcinogen-defense enzyme gene, appears to result in inactivation of the gene and a resultant increased vulnerability of prostatic cells to carcinogens.
    Studies underway in the laboratory have been directed at characterizing the genomic abnormality further, and at developing methods to restore expression of epigenetically silenced genes and/or to augment expression of other carcinogen-defense enzymes in prostate cells as prostate cancer prevention strategies.

    Another major interest pursued in the laboratory is the role of chronic or recurrent inflammation as a cause of prostate cancer. Genetic studies of familial prostate cancer have identified defects in genes regulating host inflammatory responses to infections.
    A newly described prostate lesion, proliferative inflammatory atrophy (PIA), appears to be an early prostate cancer precursor. Current experimental approaches feature induction of chronic prostate inflammation in laboratory mice and rats, and monitoring the consequences on the development of PIA and prostate cancer.
    view more

    Research Areas: cellular biology, cancer, epigenetics, DNA
  1. 1
  2. 2
  3. 3
  4. 4
Create lab profile
Edit lab profile
back to top button