Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 7 of 7 results for organs

Show: 10 · 20 · 50

  1. 1
  • Andrew Douglas Lab

    Research in the Andrew Douglas Lab investigates topics within the field of biomedical engineering. Our studies primarily focus on soft biological tissues and organs, such as the heart and tongue. Our current research areas include the nonlinear mechanics of solids, the mechanical response of compliant biological tissues, finite deformation elasticity, and the static and dynamic fracture of ductile materials.

    Research Areas: biomedicine, soft tissues, biomedical engineering, organs

    Principal Investigator

    Andrew Douglas, Ph.D.

    Department

    Biomedical Engineering

  • Brendan Cormack Laboratory

    The Brendan Cormack Laboratory studies fungal pathogenesis, particularly the host-pathogen interaction for the yeast pathogen Candida glabrata.

    We are trying to identify virulence genes (genes that evolved in response to the host environment) by screening transposon mutants of C. glabrata for mutants that are specifically altered in adherence to epithelial cells, in survival in the presence of macrophages and PMNs. We also screen mutants directly in mice for those unable to colonize or persist in the normal target organs (liver, kidney and spleen).

    We also focus research on a family of genes--the EPA genes--that allow the organism to bind to host cells. Our research shows that a subset of them are able to mediate adherence to host epithelial cells. We are trying to understand the contribution of this family to virulence in C. glabrata by figuring out what the ligand specificity is of different family members, how genes are normally regulated during infection, and what mechanism...s normally act to keep the genes transcriptionally silent and how that silence is regulated. view more

    Research Areas: candida glabrata, pathogenesis, virulence genes, yeast, molecular biology

    Principal Investigator

    Brendan Cormack, Ph.D.

    Department

    Molecular Biology and Genetics

  • Christine Durand Lab

    Dr. Christine Durand, assistant professor of medicine and oncology and member of the Johns Hopkins Kimmel Cancer Center, is involved in clinical and translational research focused on individuals infected with HIV and hepatitis C virus who require cancer and transplant therapies. Her current research efforts include looking at outcomes of hepatitis C treatment after solid organ transplant, the potential use of organs from HIV-infected donors for HIV-infected solid organ transplant candidates, and HIV cure strategies including bone marrow transplantation.

    Dr. Durand is supported by multiple grants:

    • R01 from the National Institute of Allergy and Infectious Diseases (NIAID) to study HIV-to-HIV organ transplantation in the US.
    • K23 from the National Cancer Institute (NCI) to study antiretroviral therapy during bone marrow transplant in HIV-1 infection.
    • U01 from the NIAID to study HIV-to-HIV deceased donor kidney transplantation.
    U01 from the NIAID to study HIV-to-HIV deceased ...donor liver transplantation. view more

    Research Areas: Bone Marrow Transplantation, transplants, infectious disease, AIDS, HIV, Solid Organ Transplantation, hepatitis C

    Principal Investigator

    Christine Durand, M.D.

    Department

    Medicine

  • Clemens Lab

    Research in the Clemens Lab focuses on identification of the cellular and molecular mechanisms that mediate bone formation and repair. Currently, we are studying the role of sensory nerves in bone and the coupling of bone cell metabolic activity to the sensory nerves' development and function.

    The skeleton is one of the most important structures in our bodies. Bones allow us to stand, walk and move from one place to another, and they serve as protectors of our vital organs. With aging, our skeleton both loses its bone mineral and the structure (micro-architecture). The fine trabecular bone is organized into plates and rods, and these structures develop cracks and discontinuity. As we age, bone is lost and its structure compromised. This degradation of our bone structure — osteoporosis — is a global health problem. Thomas Clemens, M.D. is the director of the Clemens lab. He is the Lewis Cass Spencer professor of orthopaedic surgery and the vice chair for research in the Department of... Orthopaedic Surgery at Johns Hopkins. view more

    Research Areas: osteoporosis, orthopaedics, sensory nerves, osteopenia, bone disease, bone repair

    Lab Website

    Principal Investigator

    Thomas Clemens, Ph.D.

    Department

    Orthopaedic Surgery

  • David Moller Lab

    Research in the David Moller Lab focuses on sarcoidosis, a potentially fatal inflammatory disease characterized by tiny clumps of inflammatory cells that scar the lungs, lymph nodes, skin and other major organs. We’re currently involved in a clinical trial related to genomic research in sarcoidosis and a clinical trial related to genomic research in Alpha-1 antitrypsin deficiency. Previously, we led a project that identified a potential protein trigger responsible for sarcoidosis.

    Research Areas: Alpha-1 antitrypsin deficiency, sarcoidosis, genomics

    Principal Investigator

    David Moller, M.D.

    Department

    Medicine

  • Molecular Mechanisms of Cellular Mechanosensing (Robinson Lab)

    The Robinson Lab studies the way in which mechanical stress guide and direct the behavior of cells, including when they are part of tissues, organs and organ systems.

    Research Areas: cellular mechanosensing, tissues, organs, molecular biology

  • Robert Fitzgerald Laboratory

    The Robert Fitzgerald Laboratory studies cardiopulmonary physiology, especially cardiopulmonary control. We have focused in particular on the operation of the carotid body and the role of acetylcholine in its functioning. We have also examined the reflex effects of carotid body stimulation in various organs as well as the reflex response of ACTH and adrenal cortical hormones to hypoxic peripheral arterial chemoreceptor stimulation. We are currently interested in the spleen, as it is the only organ other than the lung that demonstrates increased vascular resistance in response to local hypoxia.

    Research Areas: acetylcholine, carotid body, cardiopulmonary diseases, lung disease, hypoxia

    Principal Investigator

    Robert Fitzgerald, Ph.D.

    Department

    Medicine

  1. 1