Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 20 of 29 results for neuroscience

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Auditory Brainstem Laboratory

    The overall goal of the Auditory Brainstem Library is to understand how abnormal auditory input from the ear affects the brainstem, and how the brain in turn affects activity in the ear through efferent feedback loops. Our emphasis is on understanding the effects of different forms of acquired hearing loss (genetic, conductive, noise-induced, age-related, traumatic brain injury-related) and environmental noise. We are particularly interested in plastic changes in the brain that compensate for some aspects of altered auditory input, and how those changes relate to central auditory processing deficits, tinnitus, and hyperacusis. Understanding these changes will help refine therapeutic strategies and identify new targets for treatment. We collaborate with other labs in the Depts. of Otolaryngology, Neuroscience, Neuropathology, the Wilmer Eye Institute, and the Applied Physics Laboratory at Johns Hopkins, in addition to labs outside the university to increase the impact and clinical relev...ance of our research. view more

    Research Areas: hearing disorders, compound action potentials, auditory brainstem response, otoacoustic emissions, operation conditions, audiology, acoustic startle modification, hearing, neurology

  • Brain Science Institute (BSi)

    The Brain Science Institute (BSi) brings together both basic and clinical neuroscientists from across the Johns Hopkins campuses. The BSi represents one of the largest and most diverse groups in the university. The BSi's mission is to solve fundamental questions about brain development and function and to use these insights to understand the mechanisms of brain disease. This new knowledge will provide the catalyst for the facilitation and development of effective therapies. The goals of our research are to foster new programs in basic neuroscience discovery; initiate a translational research program that will develop new treatments for brain-based diseases; and encourage collaboration, interdisciplinary teams, and new thinking that will have a global influence on research and treatment of the nervous system.

    Research Areas: brain, neuroscience, neurology, nervous system

    Lab Website

    Principal Investigator

    Jeffrey Rothstein, M.D., Ph.D.

    Department

    Neurology

  • Christopher Potter Lab

    The Christopher Potter Lab functions at an intersection between systems and cellular neuroscience. We are interested in how neurons and circuits function in the brain to achieve a common goal (olfaction), but we also develop, utilize and build tools (molecular and genetic) that allow us to directly alter neuronal functions in a living organism. The specific focus of my laboratory is to understand how the insect brain receives, interprets, and responds to odors. Insects rely on their sense of smell for all major life choices, from foraging to mating, from choosing where to lay eggs to avoiding predators and dangers. We are interested in understanding at the neuronal level how odors regulate these behaviors. Our long-term aim is to apply this knowledge to better control insects that pose a threat to human health. Our general approach towards achieving this goal is to develop and employ new genetic methods that enable unprecedented control over neural circuits in both the model organism D...rosophila melanogaster and human malaria vector Anopheles gambiae. view more

    Research Areas: neural circuits, neurons, brain, neuroscience, olfactory system

    Lab Website

    Principal Investigator

    Christopher Potter, Ph.D.

    Department

    Neuroscience

  • Clinical and Computational Auditory neuroscience

    Our laboratory investigates the neural bases of sound processing in the human brain. We combine electrophysiology recordings (intracranial, scalp), behavioral paradigms, and statistical modeling methods to study the cortical dynamics of normal and impaired auditory perception. We are interested in measuring and modeling variability in spatiotemporal cortical response patterns as a function of individual listening abilities and acoustic sound properties. Current studies are investigating the role of high-frequency (>30 Hz) neural oscillations in human auditory perception.

    Research Areas: vestibular disorders

    Lab Website

    Principal Investigator

    Dana Boatman, Ph.D.

    Department

    Neurology

  • Cohen Lab

    The Cohen Lab studies neural circuits underlying reward, mood and decision making. We seek to understand how neural circuits control fundamental mammalian behaviors. Many disorders, including depression, schizophrenia, drug addiction and Parkinson's disease, appear to involve dysfunction of monoaminergic signaling. Using cell-type-specific tools and well-controlled behavioral tasks in mice, we aim to understand the function of monoaminergic circuits in behavior. We hope these basic discoveries will lead to an understanding of the biology of the brain and better treatments for disorders of the brain.

    Research Areas: neural circuits, brain, schizophrenia, mental illness, neuroscience, Parkinson's disease

    Lab Website

    Principal Investigator

    Jeremiah Cohen, Ph.D.

    Department

    Neuroscience

  • Computational Neuroscience Laboratory

    In the computational neuroscience Laboratory, we construct quantitative models of biological nervous systems that are firmly based on their neurophysiology, neuroanatomy and behavior, and that are developed in close interaction with experimentalists. Our main interest is neuronal function at the system level, reflecting the interaction of subsystems to generate useful behavior. Modeling is particularly important for understanding this and other system-level functions, since it requires the interaction of several pathways and neural functions.

    One of the functions we study is selective attention--that is, the capability of higher animals to scan sensory input for the most important information and to discard all other. Models of the neuronal basis of visual selective attention are constructed by simulating them on digital computers and comparing the results with data obtained from the visual and somatosensory systems of primates. We pay particular attention to the mechanisms involvi...ng the implementation of neural mechanisms that make use of the temporal structure of neuronal firing, rather than just the average firing rate. view more

    Research Areas: neuronal function, neuroanatomy, selective attention, neurophysiology, nervous system

    Lab Website

    Principal Investigator

    Ernst Niebur, M.Sc., Ph.D.

    Department

    Neuroscience

  • Dong Laboratory

    The Dong Laboratory has identified many genes specifically expressed in primary sensory neurons in dorsal root ganglia (DRG). Our lab uses multiple approaches, including molecular biology, mouse genetics, mouse behavior and electrophysiology, to study the function of these genes in pain and itch sensation. Other research in the lab examines the molecular mechanism of how skin mast cells sensitize sensory nerves under inflammatory states.

    Research Areas: skin cells, electrophysiology, genetics, itch, neuroscience, pain, molecular biology

    Lab Website

    Principal Investigator

    Xinzhong Dong, Ph.D.

    Department

    Neuroscience

  • Dwight Bergles Laboratory

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Dwight Bergles, Ph.D.

    Department

    Neuroscience

  • Erwin Lab

    Schizophrenia, autism and other neurological disorders are caused by a complex interaction between inherited genetic risk and environmental experiences. The overarching goal of the group are to reveal molecular mechanisms of gene by environment interactions related to altered neural development and liability for brain disorders. Our research uses a hybrid of human stem cell models, post-mortem tissue and computational approaches to interrogate the contribution of epigenetic regulation and somatic mosaicism to brain diseases. Our previous work has demonstrated that the human brain exhibits extensive genetic variability between neurons within the same brain, termed "somatic mosaicism" due to mobile DNA elements which mediate large somatic DNA copy number variants. We study environment-responsive mechanisms and consequences for somatic mosaicism and are discovering the landscape of somatic mosaicism in the brain. We also study the epigenetic regulation of cell specification and activity-d...ependent states within the human dorsal lateral prefrontal cortex and striatum. view more

    Research Areas: autism, Cellular and Molecular Neuroscience, stem cells, Developmental Neuroscience, Neurobiology of Disease, Induced Pluripotent Stem Cell Models, Organoids, schizophrenia, genomics, Dystonia, Epigenomics

    Lab Website

    Principal Investigator

    Jennifer Erwin, Ph.D.

    Department

    Neurology

  • Glowatzki Lab

    Research in the Glowatzki Lab focuses on the auditory system, with a particular focus on synaptic transmission in the inner ear.

    Our lab is using dendritic patch clamp recordings to examine mechanisms of synaptic transmission at this first, critical synapse in the auditory pathway. With this technique, we can diagnose the molecular mechanisms of transmitter release at uniquely high resolution (this is the sole input to each afferent neuron), and relate them directly to the rich knowledge base of auditory signaling by single afferent neurons.

    We study pre- and post-synaptic mechanisms that determine auditory nerve fiber properties. This approach will help to study general principles of synaptic transmission and specifically to identify the molecular substrates for inherited auditory neuropathies and other cochlear dysfunctions.

    Research Areas: synaptic transmission, auditory synapses, inner ear, neurotransmitters, inherited auditory neuropathy, cochlear dysfunctions, otolaryngology, audiology, neuroscience, sound

  • Jantzie Lab

    Dr. Jantzie, associate professor, received her Ph.D. in Neurochemistry from the University of Alberta in 2008. In 2013 she completed her postdoctoral fellowship in the Department of Neurology at Boston Children's Hospital & Harvard Medical School and became faculty at the University of New Mexico. Dr. Jantzie then joined the faculty Departments of Pediatrics (Neonatal-Perinatal Medicine) and Neurology at Johns Hopkins University and the Kennedy Krieger Institute in January 2019. Her lab investigates the pathophysiology of encephalopathy of prematurity, and pediatric brain injury common to infants and toddlers. Dr. Jantzie is dedicated to understanding disease processes in the developing brain as a means to identifying new therapeutic strategies and treatment targets for perinatal brain injury. Her lab studies neural substrates of cognition and executive function, inhibitory circuit formation, the role of an abnormal intrauterine environment on brain development, mechanisms of neurorepa...ir and microglial activation and polarization. Using a diverse array of clinically relevant techniques such as MRI, cognitive assessment, and biomarker discovery, combined with traditional molecular and cellular biology, the Jantzie lab is on the front lines of translational pediatric neuroscience.? view less

    Research Areas: Neonatology, neuroscience

    Principal Investigator

    Lauren Jantzie, Ph.D.

    Department

    Pediatrics

  • Jeremy Nathans Laboratory

    The Jeremy Nathans Laboratory is focused on neural and vascular development, and the role of Frizzled receptors in mammalian development. We use gene manipulation in the mouse, cell culture models, and biochemical reconstitution to investigate the relevant molecular events underlying these processes, and to genetically mark and manipulate cells and tissues. Current experiments are aimed at defining additional Frizzled-regulated processes and elucidating the molecular mechanisms and cell biologic results of Frizzled signaling within these various contexts. Complementing these areas of biologic interest, we have ongoing technology development projects related to genetically manipulating and visualizing defined cell populations in the mouse, and quantitative analysis of mouse visual system function.

    Research Areas: vascular development, biochemistry, cell biology, neurodevelopment, genomics, Frizzled receptors, neuroscience

  • Kata Design Studio

    We started Kata to bridge the gap between professional experiential production and neuroscience, clinical neurology, and medical hardware. We strive to build experiences and technology from the ground up, with a focus on mission, and at a level that is consistent with the best productions in the industry. We mirror the thousands of hours that go into a level design in a video game, but with the crucial difference that the focus is on the subtleties required for patient treatment or wellness. Our designs require high-frequency iterative development with patients and users in countless game-play sessions in which they provide crucial feedback. Characters have been painstakingly crafted to elicit profound emotional responses. Some of the requirements for patients or the elderly population in this space are qualitatively different from what is needed in the entertainment marketplace. That said we have also understood the critical artistic similarities.

    The core ethos of Kata is that the... challenge of complex movement has profound benefits for cognition, wellness, and brain repair. Specifically, there is growing evidence that complex motor movement can have cognitive benefits that go beyond what has been reported for exercise alone. When designing experiences to treat motor impairments after stroke, maximizing rigorous and dynamic motor input is a requirement. New interactive technologies will allow people to engage in diverse and complex motor movements, even in the home, which was previously impossible.

    Overall it has been a very exciting journey, combining art, medicine, technology, and neuroscience. We continue to build, discover, and craft immersive experiences, side by side with physicians, physical therapists, and scientists, with the common goal of pushing clinical care and wellness forward. We believe this is only possible by having a mission focused design group embedded in an academic hospital. Ultimately, we wish to scale and perfect these innovations into other hospitals. Kata is a true hybrid of academia, and industry, doing what neither can do in isolation. We hope the ethos and design philosophy behind Kata provides the impetus for its expansion, partnerships, and growth.
    view less

    Research Areas: ALS, stroke, vestibular disorders

    Lab Website

    Principal Investigator

    John Krakauer, M.A., M.D.

    Department

    Neurology

  • Kathleen Cullen Lab

    We are continually in motion. This self-motion is sensed by the vestibular system, which contributes to an impressive range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. The objective of Dr. Cullen's lab's research program is to understand the mechanisms by which self-motion (vestibular) information is encoded and then integrated with signals from other modalities to ensure accurate perception and control of gaze and posture. Our studies investigate the sensorimotor transformations required for the control of movement, by tracing the coding of vestibular stimuli from peripheral afferents, to behaviorally-contingent responses in central pathways, to the readout of accurate perception and behavior. Our experimental approach is multidisciplinary and includes a combination of behavioral, neurophysiological and computational approaches in alert behaving non-human primates and mice. Funding for the laboratory has been and is provided by th...e Canadian Institutes for Health Research (CIHR), The National Institutes of Health (NIH), the National Sciences and Engineering Research Council of Canada (NSERC), FQRNT / FQRSC (Quebec). view more

    Research Areas: otolaryngology, biomedical engineering, surgery, neuroscience

  • Kechen Zhang Laboratory

    The research in the Kecken Zhang Laboratory is focused on theoretical and computational neuroscience. We use mathematical analysis and computer simulations to study the nervous system at multiple levels, from realistic biophysical models to simplified neuronal networks. Several of our current research projects involve close collaborations with experimental neuroscience laboratories.

    Research Areas: biophysics, neuroscience, neuronal networks, nervous system

    Lab Website

    Principal Investigator

    Kechen Zhang, Ph.D.

    Department

    Biomedical Engineering

  • Laboratory for Computational Motor Control

    The Laboratory for computational Motor Control studies movement control in humans, including healthy people and people with neurological diseases. We use robotics, brain stimulation and neuroimaging to study brain function. Our long-term goals are to use mathematics to understand: 1) the basic function of the motor structures of the brain including the cerebellum, the basal ganglia and the motor cortex; and 2) the relationship between how our brain controls our movements and how it controls our decisions.

    Research Areas: robotics, brain, movement, mathematics, neuroscience, decision making

  • Marvel Cognitive Neuropsychiatric Research Laboratory

    The Cognitive Neuropsychiatric Research Laboratory (CNRLab) is part of the Division of Cognitive Neuroscience within the Department of Neurology at the Johns Hopkins University School of Medicine. Its current projects include investigating the motor system's contribution to cognitive function; HIV-related neuroplasticity and attention-to-reward as predictors of real world function; and brain function and cognition in Lyme disease.

    Research Areas: HIV, neuroplasticity, movement disorders, cognitive function

    Lab Website

    Principal Investigator

    Cherie Marvel, Ph.D.

    Department

    Neurology

  • Neuroengineering and Biomedical Instrumentation Lab

    The mission and interest of the neuroengineering and Biomedical Instrumentation Lab is to develop novel instrumentation and technologies to study the brain at several levels--from single cell to the whole brain--with the goal of translating the work into practical research and clinical applications.

    Our personnel include diverse, independent-minded and entrepreneurial students, post docs, and research faculty who base their research on modern microfabrication, stem cell biology, electrophysiology, signal processing, image processing, and integrated circuit design technologies.

    Research Areas: stem cells, imaging, brain, electrophysiology, neuroengineering, biomedical engineering, neuroscience

    Lab Website

    Principal Investigator

    Nitish Thakor, Ph.D.

    Department

    Biomedical Engineering

  • Neuroimaging and Modulation Laboratory (NIMLAB)

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.

    Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation

    Lab Website

    Principal Investigator

    John Desmond, M.S., Ph.D.

    Department

    Neurology

  • O'Connor Lab

    How do brain dynamics give rise to our sensory experience of the world? The O'Connor lab works to answer this question by taking advantage of the fact that key architectural features of the mammalian brain are similar across species. This allows us to leverage the power of mouse genetics to monitor and manipulate genetically and functionally defined brain circuits during perception. We train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, we assemble a description of the relationship between neural circuit function and perception. We work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas. Our mission is to reveal the neural circuit foundations of sensory perception; to provide a framework to understand how circuit dysfunction causes ...mental and behavioral aspects of neuropsychiatric illness; and to help others fulfill creative potential and contribute to human knowledge. view more

    Research Areas: brain, mental illness, neuroscience, perception

    Lab Website

    Principal Investigator

    Daniel O'Connor, M.A., Ph.D.

    Department

    Neuroscience

  1. 1
  2. 2