Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for neuronal signaling

Displaying 1 to 3 of 3 results
Results per page:
  • Dwight Bergles Laboratory

    Lab Website
    Principal Investigator:
    Dwight Bergles, Ph.D.
    Neuroscience

    The Bergles Laboratory studies synaptic physiology, with an emphasis on glutamate transporters and glial involvement in neuronal signaling. We are interested in understanding the mechanisms by which neurons and glial cells interact to support normal communication in the nervous system. The lab studies glutamate transport physiology and function. Because glutamate transporters play a critical role in glutamate homeostasis, understanding the transporters' function is relevant to numerous neurological ailments, including stroke, epilepsy, and neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). Other research in the laboratory focuses on signaling between neurons and glial cells at synapses. Understanding how neurons and cells communicate, may lead to new approaches for stimulating re-myelination following injury or disease. Additional research in the lab examines how a unique form of glia-to-neuron signaling in the cochlea influences auditory system development, whethe...r defects in cell communication lead to certain hereditary forms of hearing impairment, and if similar mechanisms are related to sound-induced tinnitus. view more

    Research Areas: epilepsy, synaptic physiology, ALS, stroke, neuronal signaling, glutamate transport physiology and function, audiology, neuroscience, neurology, nervous system, molecular biology
  • Ted Dawson Laboratory

    Lab Website
    Principal Investigator:
    Ted Dawson, M.D., Ph.D.
    Neurology

    The Ted Dawson Laboratory uses genetic, cell biological and biochemical approaches to explore the pathogenesis of Parkinson's disease (PD) and other neurologic disorders. We also investigate several discrete mechanisms involved in cell death, including the role of nitric oxide as an endogenous messenger, the function of poly (ADP-ribose) polymerase-1 and apoptosis inducing factor in cell death, and how endogenous cell survival mechanisms protect neurons from death.

    Research Areas: nitric oxide, neuronal signaling, genomics, pathogenesis, Parkinson's disease, cell death
  • Veit Stuphorn Laboratory

    Principal Investigator:
    Veit Stuphorn, Ph.D.
    Neuroscience

    The Veit Stuphorn Laboratory studies the neurophysiological mechanisms that underlie decision making and self-control. We record the activity of single neurons in awake animals that are engaged in decision-making processes. This allows us to identify the types of signals that neurons in specific parts of the brain represent and the computations they carry out. We also study human subjects in the same tasks with the help of fMRI. These parallel experiments provide comparative information about decision processes in human and non-human primates.

    Research Areas: neurophysiology, neuronal signaling, decision making
  1. 1
Create lab profile
Edit lab profile
back to top button