Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 4 of 4 results for neuronal function

Show: 10 · 20 · 50

  1. 1
  • Computational Neuroscience Laboratory

    In the computational neuroscience Laboratory, we construct quantitative models of biological nervous systems that are firmly based on their neurophysiology, neuroanatomy and behavior, and that are developed in close interaction with experimentalists. Our main interest is neuronal function at the system level, reflecting the interaction of subsystems to generate useful behavior. Modeling is particularly important for understanding this and other system-level functions, since it requires the interaction of several pathways and neural functions.

    One of the functions we study is selective attention--that is, the capability of higher animals to scan sensory input for the most important information and to discard all other. Models of the neuronal basis of visual selective attention are constructed by simulating them on digital computers and comparing the results with data obtained from the visual and somatosensory systems of primates. We pay particular attention to the mechanisms involvi...ng the implementation of neural mechanisms that make use of the temporal structure of neuronal firing, rather than just the average firing rate. view more

    Research Areas: neuronal function, neuroanatomy, selective attention, neurophysiology, nervous system

    Lab Website

    Principal Investigator

    Ernst Niebur, M.Sc., Ph.D.

    Department

    Neuroscience

  • Jay Baraban Laboratory

    The Jay Baraban Laboratory studies key aspects of neuronal plasticity induced by environmental stimuli, including drugs. The ability of the microRNA system to regulate protein translation in the vicinity of synapses indicates it is well positioned to play a central role in regulating synaptic plasticity. Accordingly, we are studying how this system regulates synaptic function. In particular, we have identified the translin/trax RNAse complex as a key regulator of microRNA processing and are using genetically engineered mice that lack this complex to understand its role in neuronal function. For example, these mice display defects in responsiveness to cocaine and in certain forms of synaptic plasticity. We use a combination of behavioral and molecular approaches to conduct studies aimed at understanding how the microRNA system regulates these processes.

    Research Areas: synaptic plasticity, neuronal plasticity, drugs, RNA

    Principal Investigator

    Jay Baraban, M.D., Ph.D.

    Department

    Neuroscience

  • Mollie Meffert Lab

    The Mollie Meffert Lab studies mechanisms underlying enduring changes in brain function. We are interested in understanding how programs of gene expression are coordinated and maintained to produce changes in synaptic, neuronal and cognitive function. Rather than concentrating on single genes, our research is particularly focused on understanding the upstream processes that allow neuronal stimuli to synchronously orchestrate both up and down-regulation of the many genes required to mediate changes in growth and excitation. This process of gene target specificity is implicit to the appropriate production of gene expression programs that control lasting alterations in brain function.

    Research Areas: cognition, neuronal function, synaptic function, brain, genomics

  • Svetlana Lutsenko Laboratory

    The research in the Svetlana Lutsenko Laboratory is focused on the molecular mechanisms that regulate copper concentration in normal and diseased human cells. Copper is essential for human cell homeostasis. It is required for embryonic development and neuronal function, and the disruption of copper transport in human cells results in severe multisystem disorders, such as Menkes disease and Wilson's disease. To understand the molecular mechanisms of copper homeostasis in normal and diseased human cells, we utilize a multidisciplinary approach involving biochemical and biophysical studies of molecules involved in copper transport, cell biological studies of copper signaling, and analysis of copper-induced pathologies using Wilson's disease gene knock-out mice.

    Research Areas: biophysics, biochemistry, menkes disease, Wilson's disease, cell biology, multisystem disorders, physiology, copper, molecular biology

    Lab Website

    Principal Investigator

    Svetlana Lutsenko, Ph.D.

    Department

    Physiology

  1. 1