Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 2 of 2 results for neuronal excitability

Show: 10 · 20 · 50

  1. 1
  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobiology, and clinical neurology. The primary research interests of the laboratory are:

    1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
    2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitab...ility.
    3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
    4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    view less

    Research Areas: multiple sclerosis, PTSD, HAND, HIV

    Lab Website

    Principal Investigator

    Norman Haughey, Ph.D.



  • William Agnew Laboratory

    The Agnew Laboratory examines the structure, mechanism and regulation of ion channels that mediate the action potential in nerve and muscle, as well as intracellular calcium concentrations. Much of our work has centered on voltage-activated sodium channels responsible for the inward currents of the action potential. These studies encompass biochemical, molecular biological and biophysical studies of Na channel structure, gating and conductance mechanisms, the stages of channel biosynthesis and assembly, and mechanisms linked to channel neuromodulation.

    In recent molecular cloning and expression studies, we have characterized mutations in the human muscle sodium channel that appear to underlie certain inherited myopathies. New studies being pursued in our group also address the questions of structure, receptor properties, and biophysical behavior of intracellular calcium release channels activated by inositol-1,4,5-triphosphate. These channels are expressed at extremely high levels selected cells of the central nervous system, and may play a role in modulating neuronal excitability. view less

    Research Areas: central nervous system, neuronal excitability, biophysiology, biochemistry, sodium channels, ion channels, molecular biology

    Principal Investigator

    William Agnew, Ph.D.



  1. 1