Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 3 of 3 results for neurological disease

Show: 10 · 20 · 50

  1. 1
  • Michael Wolfgang Laboratory

    The Wolfgang Laboratory is interested in understanding the metabolic properties of neurons and glia at a mechanistic level in situ. Some of the most interesting, enigmatic and understudied cells in metabolic biochemistry are those of the nervous system. Defects in these pathways can lead to devastating neurological disease. Conversely, altering the metabolic properties of the nervous system can have surprisingly beneficial effects on the progression of some diseases. However, the mechanisms of these interactions are largely unknown.

    We use biochemical and molecular genetic techniques to study the molecular mechanisms that the nervous system uses to sense and respond to metabolic cues. We seek to understand the neurometabolic regulation of behavior and physiology in obesity, diabetes and neurological disease.

    Current areas of study include deconstructing neurometabolic pathways to understand the biochemistry of the nervous system and how these metabolic pathways impact animal beh...avior and physiology, metabolic heterogeneity and the evolution of metabolic adaptation. view more

    Research Areas: metabolic biochemistry, obesity, diabetes, genomics, neurology, nervous system, molecular biology

    Principal Investigator

    Michael J. Wolfgang, Ph.D.

    Department

    Biological Chemistry

  • Neuroimmunopathology Lab

    The research activities of the Neuroimmunopathology Laboratory focus on studies of immunological and molecular mechanisms involved in the pathogenesis of neurological disorders. Our main areas of research include studies of neurological complications of HIV infection and AIDS, multiple sclerosis, transverse myelitis, autism and epilepsy. We seek to explore and identify immunopathological mechanisms associated with neurological disease that may be the target of potential therapeutic interventions. The laboratory collaborates with other researchers and laboratories at Johns Hopkins and other institutions in projects related with studies of the interaction between the immune and central nervous systems in pathological processes leading to neurological dysfunction.

    Research Areas: multiple sclerosis, autism, epilepsy, HIV, transverse myelitis

    Principal Investigator

    Carlos Pardo-Villamizar, M.D.

    Department

    Neurology
    Neurosurgery

  • Zhaozhu Qiu Laboratory

    Ion channels are pore-forming membrane proteins gating the flow of ions across the cell membrane. Among their many functions, ion channels regulate cell volume, control epithelial fluid secretion, and generate the electrical impulses in our brain. The Qiu Lab employs a multi-disciplinary approach including high-throughput functional genomics, electrophysiology, biochemistry, and mouse genetics to discover novel ion channels and to elucidate their role in health and disease.

    Research Areas: ion channel, neurological disease, electrophysiology, functional genomics, sensory neuroscience

    Lab Website

    Principal Investigator

    Zhaozhu Qiu, Ph.D.

    Department

    Neuroscience
    Physiology

  1. 1