Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 10 results for myocardial infarction

Show: 10 · 20 · 50

  1. 1
  • Adult Cardiac Catheterization Laboratory

    Our group is interested in the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures.

    Research Areas: cardiac catheterization, Acute Myocardial Infarction

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • Becker Lab

    The main focus of the Becker lab has been on the mechanisms and consequences of post-ischemic myocardial inflammation.

    Genomic control of platelet function:

    Aggregation of blood platelets initiates clotting in coronary arteries, the main cause of heart attacks. Our laboratory conducts experiments to understand how genes control platelet function. Through funding by the National Heart Lung and Blood Institute, we have performed candidate gene analysis, linkage studies, whole genome association studies, and now whole genome sequencing in about 2000 healthy subjects from families with early onset coronary artery disease. The subjects are siblings or offspring of an individual identified with coronary artery disease before age 60 in the GeneSTAR Research Program (Genetic Studies of Atherosclerosis Risk). We have identified a large number of common and rare genetic variants associated with platelet aggregation, and although some variants are located in genes known to be important in... the biology of platelet function, most are in non-protein coding regions of genes (introns) or in intergenic regions of the genome. To understand better how these variants influence platelet function, we created pluripotent stem cells from blood mononuclear cells in 257 genotyped GeneSTAR subjects and then transformed the stem cells to megakaryocytes, the source of platelets in the bone marrow. We have determined the entire transcriptome of these megakaryocytes to measure gene expression levels in an effort to functionally link genetic variation with platelet function. We are also interested in epigenetic effects which regulate the amount of gene transcription and resulting protein formation. We have done similar transcriptomic and proteomic studies in blood platelets as we have in stem cell-derived megakaryocytes.

    Our goal is to identify new therapeutic targets for drug development to control excessive platelet aggregation and reduce the risk of heart attack in susceptible individuals. We also hope to use the genetic information to predict who is at greatest risk for platelet aggregation or bleeding, and tailor treatment to effectively apply individualized precision medicine.

    The Becker laboratory also extends its cardiovascular work well beyond platelet function, as noted on the GeneSTAR Research Program website.
    view more

    Research Areas: post-ischemic myocardial inflammation, effects of mental stress on the heart, cardiology, genetics of premature coronary artery disease, myocardial infarction

    Lab Website

    Principal Investigator

    Lewis Becker, M.D.

    Department

    Medicine

  • Daniel Ford Lab

    Research in the Daniel Ford Lab seeks to understand the relationships between depression and various chronic medical conditions. Recently, we've focused on depression and coronary artery disease as well as tactics for improving care for patients with medical comorbidity. Our research was among the first to document depression as a risk factor for myocardial infarction and stroke. Our team is also interested in exploring how information technology can be used to improve the care of patients with depression and tobacco abuse.

    Research Areas: coronary artery disease, tobacco use, depression, stroke, information technology, myocardial infarction

    Principal Investigator

    Daniel Ford, M.D., M.P.H.

    Department

    Medicine

  • Dara Kraitchman Laboratory

    The Dara Kraitchman Laboratory focuses on non-invasive imaging and minimally invasive treatment of cardiovascular disease. Our laboratory is actively involved in developing new methods to image myocardial function and perfusion using MRI. Current research interests are aimed at determining the optimal timing and method of the administration of mesenchymal stem cells to regenerate infarcted myocardium using non-invasive MR fluoroscopic delivery and imaging. MRI and radiolabeling techniques include novel MR and radiotracer stem cell labeling methods to determine the location, quantity and biodistribution of stem cells after delivery as well as to noninvasively determine the efficacy of these therapies in acute myocardial infarction and peripheral arterial disease.

    Our other research focuses on the development of new animal models of human disease for noninvasive imaging studies and the development of promising new therapies in clinical trials for companion animals.

    Research Areas: imaging, cardioavascular, radiology, MRI, cardiomyopathy

  • Johnston-Hwang Lab

    Development and optimization of stem cell and regenerative therapies for heart failure and myocardial infarction.

    CardiAMP Heart Failure Trial, Implantable Bioreactor for Prevention of Adverse Remodeling after Myocardial Infarction

    Research Areas: heart failure, myocardial infarction

    Principal Investigator

    Peter Johnston, M.D.

    Department

    Medicine

  • Lima Lab

    The Lima Lab’s research is concentrated on the development and application of imaging and technology to address scientific and clinical problems involving the heart and vascular system.

    Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.

    Current projects include:
    • The Coronary Artery Risk Development in Young Adults (CARDIA) Study
    • The MESA (Multi-Ethnic Study of Atherosclerosis) Study
    • The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study

    Joao Lima, MD, is a professor of medicine, radiology and... epidemiology at the Johns Hopkins School of Medicine. view more

    Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction

    Lab Website

    Principal Investigator

    Joao Lima, M.B.A., M.D.

    Department

    Medicine

  • MR Research Laboratory

    The MR Research Laboratory focuses on developing and applying nuclear magnetic resonance (NMR) techniques and on measuring energy metabolites and metabolic fluxes with phosphorous (31P) and proton (1H) MRS in patients with ischemia, infarction and heart failure.

    Specific studies include: Phosphorus MR studies of myocardial energy metabolism in human heart: We have used spatially localized phosphorus MR spectroscopy (MRS) to noninvasively measure high-energy phosphate metabolites such as ATP (adenosine triphosphate) and phosphocreatine (PCr) in the heart. The PCr/ATP ratio can change during stress-induced ischemia, and a protocol for stress-testing in the MR system has been developed which can detect the changes noninvasively in the anterior wall. Additionally, we've developed methods for noninvasively measuring the creatine kinase (CK) ATP energy supply and used it to measure the CK ATP energy supply in the healthy heart at rest and exercise, in human myocardial infarction, and in ...human heart failure.

    Interventional MRI technology: We are developing an RF dosimeter that measures incident-specific absorption rates applied during MRI independent of the scanner and developing MRI-safe internal detectors for higher field use. Outcomes of this research include the "MRI endoscope" that provides real-time, high-resolution views of vessel anatomy and a radiometric approach to detect any local heating associated with the device.
    view more

    Research Areas: infarction, magnetic resonance, creatine kinase metabolism, heart failure, MRI, ischemic disease, nuclear magnetic resonance

  • Post Lab

    The Post Lab is involved in the Multi-Ethnic Study of Atherosclerosis (MESA), a collaborative study of the characteristics of subclinical cardiovascular disease (that is, disease detected non-invasively before it has produced clinical signs and symptoms) and the risk factors that predict progression to clinically overt cardiovascular disease or progression of the subclinical disease.

    As MESA researchers, we study a diverse, population-based sample of 6,814 asymptomatic men and women aged 45-84. Approximately 38 percent of the recruited participants are white, 28 percent African-American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent.

    Participants were recruited from six field centers across the United States, including Johns Hopkins University. Each participant received an extensive physical exam to determine a number of conditions, including coronary calcification, ventricular mass and function, flow-mediated endothelial vasodilation, standard coron...ary risk factors, sociodemographic factors, lifestyle factors, and psychosocial factors.

    Selected repetition of subclinical disease measures and risk factors at follow-up visits have allowed study of the progression of disease. Participants are being followed for identification and characterization of cardiovascular disease events, including acute myocardial infarction and other forms of coronary heart disease (CHD), stroke, and congestive heart failure; for cardiovascular disease interventions; and for mortality.

    Wendy S. Post, MD, MS, is an associate faculty, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, and a professor of medicine.
    view less

    Research Areas: coronary artery disease, cardiovascular, ethnicity, pathogenesis, atherosclerosis, sudden cardiac death

    Lab Website

    Principal Investigator

    Wendy Post, M.D., M.S.

    Department

    Medicine

  • Seth Martin Lab

    Dr. Martin's research is focused on rapid generation of new knowledge through clinical studies that can be brought back to the bedside to directly inform the care of patients with advanced lipid disorders and those in need of state-of-the-art comprehensive CV prevention.

    Active Projects

    Very Large Database of Lipids, CASCADE FH Registry, MiCORE (Myocardial infarction, COmbined device, Recovery Enhancement), Google Health Search Trial, mActive-Smoke

    For more information, please visit the Ciccarone Center.

    Research Areas: myocardial infarction

    Principal Investigator

    Seth Martin, M.D., M.H.S.

    Department

    Medicine

  • The Cihakova Lab

    The Cihakova research laboratory is an immunology laboratory dedicated to the investigation of autoimmune diseases. Our most active research is focused on myocarditis and dilated cardiomyopathy. We expanded our interest in inflammatory heart diseases to include the study of immune mechanisms driving pericarditis and myocardial infarction. In addition, we are interested in the pathogenesis of a broad range of autoimmune diseases such as, Sjogren's syndrome, congenital complete heart block, and APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy). Through several collaborative projects we also investigate rheumatoid arthritis and the immune components of schizophrenia.

    Research Areas: schizophrenia, autoimmune diseases, myocardial infarction, cardiomyopathy

    Lab Website

    Principal Investigator

    Daniela Cihakova, M.D., Ph.D.

    Department

    Pathology

  1. 1