Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 5 of 5 results for movement disorders

Show: 10 · 20 · 50

  1. 1
  • Functional Neurosurgery Laboratory

    The goal of functional neurosurgery research in the Functional Neurosurgery Laboratory is to develop models to understand how brain function is affected by conditions like epilepsy and Parkinson's disease, and how this abnormal function might be corrected or minimized by neuromodulation through electrical stimulation.

    There is a limited window of time to collect information about abnormal brain function from recordings in the operating room or Epilepsy Monitoring Unit. The data that is collected, however, can be used to construct models of brain function in patients with epilepsy or Parkinson's disease. These models can be manipulated to explore functional changes and treatment possibilities.

    The FNL uses computational modeling of epilepsy as a method to understand how seizures develop, and how and where they spread in the brain. The modeling methods include large arrays of single compartment models and multi-compartment simulations of neurons to allow researchers to observe ele...ctrophysiological activity in the brain.

    Other projects include the development of a neuromodulation system that applies stimulation pulses at specific phases of brain oscillatory activity. This may be useful for the treatment of Parkinson's disease and memory disorders.
    view more

    Research Areas: epilepsy, movement disorders, Parkinson's disease, computational modeling, Functional neurosurgery

  • Marvel Cognitive Neuropsychiatric Research Laboratory

    The Cognitive Neuropsychiatric Research Laboratory (CNRLab) is part of the Division of Cognitive Neuroscience within the Department of Neurology at the Johns Hopkins University School of Medicine. Its current projects include investigating the motor system's contribution to cognitive function; HIV-related neuroplasticity and attention-to-reward as predictors of real world function; and brain function and cognition in Lyme disease.

    Research Areas: HIV, neuroplasticity, movement disorders, cognitive function

    Lab Website

    Principal Investigator

    Cherie Marvel, Ph.D.

    Department

    Neurology

  • Neuromodulation and Advanced Therapies Center

    We investigate the brain networks and neurotransmitters involved in symptoms of movement disorders, such as Parkinson's disease, and the mechanisms by which modulating these networks through electrical stimulation affects these symptoms. We are particularly interested in the mechanisms through which neuromodulation therapies like deep brain stimulation affect non-motor brain functions, such as cognitive function and mood. We use imaging of specific neurotransmitters, such as acetylcholine and dopamine, to understand the changes in brain chemistry associated with the clinical effects of deep brain stimulation and to predict which patients are likely to have changes in non-motor symptoms following DBS. Through collaborations with our neurosurgery colleagues, we explore brain function by making recordings during DBS surgery during motor and non-motor tasks. Dr. Mills collaborates with researchers in the Department of Neurosurgery, the Division of Geriatric and Neuropsychiatry in the Depar...tment of Psychiatry and Behavioral Sciences and in the Division of Nuclear Medicine within the Department of Radiology to translate neuroimaging and neurophysiology findings into clinical applications. view more

    Research Areas: Molecular imaging of effects of deep brain stimulation on cognitive function in Parkinson's disease, Trajectories and types of cognitive impairment in Parkinson's disease, Effects of neuromodulation on impulsivity and addiction-related behaviors, Parkinson's disease, Effects of transcranial direct current stimulation on mood disorders and cognitive dysfunction in Parkinson's disease, Relationship between patient-reported and objective cognitive impairments in Parkinson's disease

    Principal Investigator

    Kelly Mills, M.D., M.H.S.

    Department

    Neurology
    Neurosurgery

  • The Functional Neurosurgery Lab

    The studies of the Functional Neurosurgery Lab currently test whether neural activity related to the experimental vigilance and conditioned expectation toward pain can be described by interrelated networks in the brain. These two psychological dimensions play an important role in chronic pain syndromes, but their neuroscience is poorly understood. Our studies of spike trains and LFPs utilize an anatomically focused platform with high temporal resolution, which complements fMRI studies surveying the whole brain at lower resolution. This platform to analyze the oscillatory power of structures in the brain, and functional connections (interactions and synchrony and causal interactions) between these structures based upon signals recorded directly from the waking human brain during surgery for epilepsy and movement disorders, e.g. tremor. Our studies have demonstrated that behaviors related to vigilance and expectation are related to electrical signals from the cortex and subcortical struc...tures.

    These projects are based upon the combined expertise of Dr. Nathan Crone in recordings and clinical management of the patients studied; Dr. Anna Korzeniewska in the analyses of signals recorded from the brain; Drs. Claudia Campbell, Luana Colloca and Rick Gracely in the clinical psychology and cognitive neurology of the expectation of pain and chronic pain; Dr. Joel Greenspan in quantitative sensory testing; and Dr. Martin Lindquist in the statistical techniques. Dr. Lenz has conducted studies of this type for more than thirty years with continuous NIH funding.
    view more

    Research Areas: neurosurgery, epilepsy, movement disorders, pain

    Lab Website

    Principal Investigator

    Fred Lenz, M.D.

    Department

    Neurosurgery

  • Udall Center for Parkinson's Disease Research

    More than ten years ago, Congress created the Morris K. Udall Centers of Excellence for Parkinson's Disease Research (Udall Centers). The primary goal of the Udall Centers is to develop new clinical treatments for Parkinson's disease. However, it is well recognized that because there is so much that we do not yet understand about the causes of Parkinson's disease, basic science is currently a key component of the overall effort to develop clinical treatments. One of the goals of the Udall Centers is to have an infrastructure in place that can efficiently facilitate a rapid translation from research to clinical when promising breakthroughs occur. Recently the Udall Center has made significant steps towards understanding the underlying mechanisms that cause Parkinson's disease and have yielded promising targets for developing treatments against the disease.

    Research Areas: movement disorders

    Lab Website

    Principal Investigator

    Ted Dawson, M.D., Ph.D.

    Department

    Neurology

  1. 1