Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for mouse models

Displaying 1 to 12 of 12 results
Results per page:
  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis, particularly the pathogenesis of nasal polyps, as well as inflammation on the olfactory epithelium. Diverse techniques in molecular biology, immunology, and physiology are utilized to study epithelial cell innate immunity, olfactory loss, and response to viral infection. Ongoing work explores how epithelial cells of the sinuses and olfactory mucosa participate in the immune response and contribute to chronic inflammation. The lab creates and employs transgenic mouse models of chronic nasal/sinus inflammation to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and COVID-19.

    Research Areas: nasal polyps, immunology, COVID-19, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, neuroscience, molecular biology
  • Christopher A. Ross Lab

    Lab Website

    Dr. Ross and his research team have focused on Huntington's disease and Parkinson's disease, and now are using insights from these disorders to approach more complex diseases such as schizophrenia and bipolar disorder. They use biophysical and biochemical techniques, cell models, and transgenic mouse models to understand disease processes, and to provide targets for development of rational therapeutics. These then can provide a basis for developing small molecule interventions, which can be used both as probes to study biology, and if they have favorable drug-like properties, for potential therapeutic development. We have used two strategies for identifying lead compounds. The first is the traditional path of identification of specific molecular targets, such as enzymes like the LRRK2 kinase of Parkinson’s disease. Once structure is known, computational approaches or fragment based lead discovery, in collaboration, can be used. The second is to conduct phenotypic screens using ce...ll models, or in a collaboration, natural products in a yeast model. Once a lead compound is identified, we use cell models for initial tests of compounds, then generate analogs, and take compounds that look promising to preclinical therapeutic studies in animal models. The ultimate goal is to develop therapeutic strategies that can be brought to human clinical trials, and we have pioneered in developing biomarkers and genetic testing for developing strategies. view more

    Research Areas: psychiatric disorders
  • Elizabeth M. Jaffee, M.D.

    Lab Website
    Principal Investigator:
    Elizabeth Jaffee, M.D.
    Oncology

    Current projects include:

    The evaluation of mechanisms of immune tolerance to cancer in mouse models of breast and pancreatic cancer. We have characterized the HER-2/neu transgenic mouse model of spontaneous mammary tumors.
    This model demonstrates immune tolerance to the HER-2/neu gene product. This model is being used to better understand the mechanisms of tolerance to tumor. In addition, this model is being used to develop vaccine strategies that can overcome this tolerance and induce immunity potent enough to prevent and treat naturally developing tumors. More recently, we are using a genetic model of pancreatic cancer developed to understand the early inflammatory changes that promote cancer development.

    The identification of human tumor antigens recognized by T cells. We are using a novel functional genetic approach developed in our laboratory. Human tumor specific T cells from vaccinated patients are used to identify immune relevant antigens that are chosen... based on an initial genomic screen of overexpressed gene products. Several candidate targets have been identified and the prevelence of vaccine induced immunity has been assessed .
    This rapid screen to identify relevant antigenic targets will allow us to begin to dissect the mechanisms of tumor immunity induction and downregulation at the molecular level in cancer patients. More recently, we are using proteomics to identify proteins involved in pancreatic cancer development. We recently identified Annexin A2 as a molecule involved in metastases.

    The analysis of antitumor immune responses in patients enrolled on vaccine studies. The focus is on breast and pancreatic cancers. We are atttempting to identify in vitro correlates of in vivo antitumor immunity induced by vaccine strategies developed in the laboratory and currently under study in the clinics.
    view more

    Research Areas: immunology, cancer, anti-cancer drugs
  • Guang William Wong Lab

    Principal Investigator:
    Guang Wong, Ph.D.
    Physiology

    The Wong Lab seeks to understand mechanisms employed by cells and tissues to maintain metabolic homeostasis. We are currently addressing how adipose- and skeletal muscle-derived hormones (adipokines and myokines), discovered in our lab, regulate tissue crosstalk and signaling pathways to control energy metabolism. We use transgenic and knockout mouse models, as well as cell culture systems, to address the role of the CTRP family of hormones in physiological and disease states. We also aim to identify the receptors that mediate the biological functions of CTRPs.

    Research Areas: energy metabolism, insulin resistance, hormones, diabetes, metabolic homeostasis
  • Hey-Kyoung Lee Lab

    Principal Investigator:
    Hey-Kyoung Lee, Ph.D.
    Neuroscience

    The Hey-Kyoung Lee Lab is interested in exploring the cellular and molecular changes that happen at synapses to allow memory storage. We use various techniques, including electrophysiological recording, biochemical and molecular analysis, and imaging, to understand the cellular and molecular changes that happen during synaptic plasticity.

    Currently, we are examining the molecular and cellular mechanisms of global homeostatic synaptic plasticity using sensory cortices as model systems. In particular, we found that loss of vision elicits global changes in excitatory synaptic transmission in the primary visual cortex. Vision loss also triggers specific synaptic changes in other primary sensory cortices, which we postulate underlies sensory compensation in the blind. One of our main research goals is to understand the mechanisms underlying such cross-modal synaptic plasticity.

    We are also interested in elucidating the events that occur in diseased brains. In collaboration with othe...r researchers, we are analyzing various mouse models of Alzheimer's disease, especially focusing on the possible alterations in synaptic plasticity mechanisms.
    view more

    Research Areas: biochemistry, synaptic plasticity, memory, imaging, vision, molecular biology, Alzheimer's disease
  • Nicola Heller Lab

    Lab Website

    Research in the Nicola Heller Lab focuses on the immunobiology of macrophages. Our team explores how these cells impact diseases with an inflammatory element, such as cancer, cardiovascular disease and obesity. Using a variety of techniques, including molecular and cellular biology, biochemistry, mouse models and more, we study the role of IL-4/IL-13 signaling in asthma and allergic disease, as well as the role of alternatively activated macrophages (AAM) in the pathogenesis of allergic inflammation. Currently, we are researching the links between asthma and obesity, with a focus on the roles of gender and race.

    Research Areas: asthma, allergies, immunobiology, inflammation, macrophages
  • Philip Wong Lab

    Lab Website
    Principal Investigator:
    Philip Wong, Ph.D.
    Pathology

    The Philip Wong Lab seeks to understand the molecular mechanisms and identification of new therapeutic targets of neurodegenerative diseases, particularly Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Taking advantage of discoveries of genes linked to these diseases (mutant APP and PS in familial AD and mutant SOD1, dynactin p150glued ALS4and ALS2 in familial ALS), our laboratory is taking a molecular/cellular approach, including transgenic, gene targeting and RNAi strategies in mice, to develop models that facilitate our understanding of pathogenesis of disease and the identification and validation of novel targets for mechanism-based therapeutics. Significantly, these mouse models are instrumental for study of disease mechanisms, as well as for design and testing of therapeutic strategies for AD and ALS.

    Research Areas: neurodegenerative disorders, ALS, genomics, pathogenesis, Alzheimer's disease
  • Radiopharmaceutical Therapy and Dosimetry Lab

    Principal Investigator:
    George Sgouros, Ph.D.
     
back to top button