Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 41 to 43 of 43 results for molecular biology

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • William Agnew Laboratory

    The Agnew Laboratory examines the structure, mechanism and regulation of ion channels that mediate the action potential in nerve and muscle, as well as intracellular calcium concentrations. Much of our work has centered on voltage-activated sodium channels responsible for the inward currents of the action potential. These studies encompass biochemical, molecular biological and biophysical studies of Na channel structure, gating and conductance mechanisms, the stages of channel biosynthesis and assembly, and mechanisms linked to channel neuromodulation.

    In recent molecular cloning and expression studies, we have characterized mutations in the human muscle sodium channel that appear to underlie certain inherited myopathies. New studies being pursued in our group also address the questions of structure, receptor properties, and biophysical behavior of intracellular calcium release channels activated by inositol-1,4,5-triphosphate. These channels are expressed at extremely high levels ...in selected cells of the central nervous system, and may play a role in modulating neuronal excitability. view more

    Research Areas: central nervous system, neuronal excitability, biophysiology, biochemistry, sodium channels, ion channels, molecular biology

    Principal Investigator

    William Agnew, Ph.D.

    Department

    Physiology

  • Xiao Group

    The objective of the Xiao Group's research is to study the dynamics of cellular processes as they occur in real time at the single-molecule and single-cell level. The depth and breadth of our research requires an interdisciplinary approach, combining biological, biochemical and biophysical methods to address compelling biological problems quantitatively. We currently are focused on dynamics of the E. coli cell division complex assembly and the molecular mechanism in gene regulation.

    Research Areas: biophysics, biochemistry, E. coli, cell biology, genomics, molecular biology

  • Yarema Laboratory

    The Yarema Lab uses chemical biology, molecular and cell biology, and materials science methods to study and manipulate glycosylation. The goal of our research is to better understand human disease while furthering carbohydrate-based therapies. Our laboratory's research goals are to (1) Develop sugar analogs into viable and versatile drug candidates, (2) Apply metabolic glycoengineering to tissue engineering and stem cell research, (3) Use non-invasive magnetic stimuli to probe the effects of glycoengineering (and also to treat neurological disorders), and (4) Extend our sugar-based drug candidates into animal models and the clinic

    Research Areas: carbohydrate-based therapies, chemical biology, stem cells, cell biology, materials science, neurological disorders, molecular biology

    Lab Website

    Principal Investigator

    Kevin Yarema, Ph.D.

    Department

    Biomedical Engineering

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5