Skip Navigation

COVID-19: We are vaccinating patients ages 12+. Learn more:

Vaccines, Boosters & Additional Doses | Testing | Patient Care | Visitor Guidelines | Coronavirus | Self-Checker | Email Alerts

 

Philips Respironics issued a recall for some CPAP and BiLevel PAP devices and mechanical ventilators. Learn more.

Find a Research Lab

Research Lab Results for mitochondria

Displaying 1 to 4 of 4 results
Results per page:
  • Bioenergetics Core

    Lab Website
    Principal Investigator:
    Valina Dawson, Ph.D.
    Neurology

    Mitochondrial dysfunction has long been a consistent observation in Parkinson's disease. To understand the consequences of Parkinson's disease causing genetic mutations on the function of mitochondria, the Bioenergetics Core B will provide the following analyses to the projects in the Udall Center at Johns Hopkins: (1) Measuring rates of respiration, oxygen consumption and ATP generation, (2) Measuring calcium dynamics, (3) Measuring reactive oxygen and reactive nitrogen species, (4) Measuring the activity of the electron transport chain enzymes and metabolic enzymes, and (5) Measuring plasma versus mitochondrial membrane potential and mitochondrial membrane permeability

    Research Areas: enzymes, cell biology, bioenergetics, respiration, Parkinson's disease, mitochondria, neurology
  • Courtney Robertson Lab

    Lab Website

    Work in the Courtney Robertson Lab is focused on identifying interventions that could minimize the neurological deficits that can persist after pediatric traumatic brain injury (TBI). One study used a preclinical model to examine potential disruption of mitochondrial function and alterations in cerebral metabolism. It was found that a substantial amount of mitochondrial dysfunction is present in the first six hours after TBI. In addition, we are using nuclear magnetic resonance spectroscopy to evaluate global and regional alterations in brain metabolism after TBI. We're also collaborating with researchers at the University of Pennsylvania to compare mitochondrial function after head injury in different clinically relevant models.

    Research Areas: traumatic brain injuries, magnetic resonance spectroscopy, pediatrics, mitochondria, pediatric critical care medicine
  • Sesaki Lab

    Lab Website
    Principal Investigator:
    Hiromi Sesaki, Ph.D.
    Cell Biology

    The Sesaki Lab is interested in the molecular mechanisms and physiological roles of mitochondrial fusion. Mitochondria are highly dynamic and control their morphology by a balance of fusion and fission. The regulation of membrane fusion and fission generates a striking diversity of mitochondrial shapes, ranging from numerous small spheres in hepatocytes to long branched tubules in myotubes. In addition to shape and number, mitochondrial fusion is critical for normal organelle function.

    Research Areas: brain, mitochondrial fusion, mitochondria, molecular biology
  • Steven Claypool Lab

    Lab Website
    Principal Investigator:
    Steven Claypool, Ph.D.
    Physiology

    Research in the Claypool Lab is focused on defining how lipids and membrane proteins interact to establish and maintain normal mitochondrial function and how derangements in this complex relationship result in pathophysiology. We have demonstrated that yeast lacking tafazzin recapitulates all of the phospholipid abnormalities observed in human patients and many of the mitochondrial defects.

    Another major project in our lab focuses on the mitochondrial ADP/ATP carrier that is required for oxidative phosphorylation. Researchers are studying how these novel interactions help establish normal mitochondrial function, the biochemical details of these associations, and whether disturbances in these assemblies can contribute to mitochondrial dysfunction.

    Research Areas: biochemistry, proteomics, lipids, yeast, mitochondria, oxidative phosphorylation
  1. 1
Create lab profile
Edit lab profile
back to top button