Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 10 results for microscopy

Show: 10 · 20 · 50

  1. 1
  • Advanced Optics Lab

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering

    Lab Website

    Principal Investigator

    Scot Kuo, Ph.D.

    Department

    Biomedical Engineering

  • Fuchs Laboratory

    The Fuchs Laboratory uses cellular electrophysiology, immunolabeling and electron microscopy to study synaptic connections between sensory hair cells and neurons in the cochlea. One effort focuses on an unusual cholinergic receptor that mediates efferent inhibition of hair cells, driving discovery of the molecular mechanisms, and offering a target for protection against acoustic trauma. A second topic concerns the small number of unmyelinated "type II" afferent neurons whose synaptic connectivity and response properties argue for a role as the pathway for noxious (too loud) sound. Our studies are motivated by curiosity about fundamental mechanisms, and to provide a foundation for understanding cochlear pathogenesis.

    Research Areas: synaptic connections, immunolabeling, neurons, elecrophysiology, audiology, cellular electrophysiology, hearing loss, electron microscopy, cochlea, cochlear pathogensesis

  • Jean Kim Lab

    The Jean Kim Laboratory performs translational research in the
    area of chronic rhinosinusitis, with a niche interest in the pathogenesis of hyperplastic nasal
    polyposis. Studies encompass clinical research to basic wet laboratory research in
    studying the underlying immune and autoimmune mediated mechanism of polyp growth and
    perpetuation of disease. Human cell and tissue culture models are used. Techniques in the
    laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry,
    immunohistochemistry, electron microscopy, gene array analysis, and other molecular
    approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study
    designs include prospective and retrospective analysis of patient outcomes and clinical
    biomarkers, as wells controlled clinical trials.

    Research Areas: nasal polyps, chronic rhinosinusitis, hyperplastic nasal polyposis

  • Kristina Nielsen Laboratory

    The Kristina Nielsen Laboratory investigates neural circuits in the visual cortex that are responsible for encoding objects to understand how the visual system performs object recognition. We aim to reveal the fine-scale organization of neural circuits, with an emphasis on higher-level visual areas. We use two-photon microscopy to perform high-resolution functional imaging of visual areas in the non-human primate. We also investigate how the function of higher visual areas changes over the course of brain development in ferrets, by measuring the activity of single neurons in these areas, as well as determining the animal's visual capabilities at various developmental stages. In both types of investigations, we also rely on detailed anatomical techniques to precisely observe how the function of neuronal circuits is related to their structure.

    Research Areas: neural circuits, neurons, imaging, vision, photon microscopy, object perception

    Lab Website

    Principal Investigator

    Kristina Nielsen, Ph.D.

    Department

    Neuroscience

  • Lee Martin Laboratory

    In the Lee Martin Laboratory, we are testing the hypothesis that selective vulnerability--the phenomenon in which only certain groups of neurons degenerate in adult onset neurological disorders like amyotrophic lateral sclerosis and Alzheimer's disease--is dictated by brain regional connectivity, mitochondrial function and oxidative stress. We believe it is mediated by excitotoxic cell death resulting from abnormalities in excitatory glutamatergic signal transduction pathways, including glutamate transporters and glutamate receptors as well as their downstream intracellular signaling molecules.

    We are also investigating the contribution of neuronal/glial apoptosis and necrosis as cell death pathways in animal (including transgenic mice) models of acute and progressive neurodegeneration. We use a variety of anatomical and molecular neurobiological approaches, including neuronal tract-tracing techniques, immunocytochemistry, immunoblotting, antipeptide antibody production, transmissi...on electron microscopy and DNA analysis to determine the precise regional and cellular vulnerabilities and the synaptic and molecular mechanisms that result in selective neuronal degeneration.
    view less

    Research Areas: ALS, neurodegeneration, selective vulnerability, cell death, Alzheimer's disease

    Lab Website

    Principal Investigator

    Lee Martin, Ph.D.

    Department

    Pathology

  • Lewis Romer Lab

    Work in the Lewis Romer Lab focuses on the responses of vascular systems to disease and injury. Using cultured human endothelial cells and fibroblasts from mice that lack expression of the FAK- or Src-family kinases, we’re exploring several topics. These include the effect of inflammatory cytokine on cell adhesion to the extracellular matrix; the role of FAK signaling in inhibiting apoptosis; and the function of FAK- and Src-family kinases in cell-matrix interactions during adhesion and motility.

    Research Areas: microscopy, cellular biology, vascular biology, cardiovascular diseases

  • Mark Donowitz Lab

    Research in the Mark Donowitz Lab is primarily focused on the development of drug therapy for diarrheal disorders, intestinal salt absorption and the proteins involved including their regulation, and the use of human enteroids to understand intestinal physiology and pathophysiology. We study two gene families initially recognized by this laboratory: mammalian Na/H exchangers and the subgroup of PDZ domain containing proteins present in the brush border of epithelial cells called NHERF family. A major finding is that NHE3 exists simultaneously in different sized complexes in the brush border, which change separately as part of signal transduction initiated by mimics of the digestive process. Relevance to the human intestine is being pursued using mini-human intestine made from Lgr5+ stems cells made from intestinal biopsies and measuring function via two-photon microscopy.

    Research Areas: gastrointestinal system, gastroenterology, pathophysiology, diarrhea, drugs, physiology

    Lab Website

    Principal Investigator

    Mark Donowitz, M.D.

    Department

    Medicine

  • Nicholas Zachos Lab

    Researchers in the Nicholas Zachos Lab work to understand variations in protein trafficking that occur during pathophysiological conditions that cause ion and water transport that result in diarrhea. We recently identified a clathrin-independent endocytic pathway responsible for elevated intracellular calcium-mediated inhibition of NHE3 activity in intestinal epithelial cells. We use advanced imaging techniques, including confocal and multi-photon microscopy, to characterize protein trafficking of intestinal transporters. We also perform functional assays using fluorescent probes (ratiometric and non-ratiometric) to measure ion transport in cell culture models, intact intestinal tissues and human small intestinal enteroids.

    Research Areas: imaging, protein trafficking, diarrhea, bioinformatics, molecular biology

    Principal Investigator

    Nicholas Zachos, Ph.D.

    Department

    Medicine

  • Shigeki Watanabe Lab

    Research in the Shigeki Watanabe Lab focuses on the cellular and molecular characterizations of rapid changes that occur during synaptic plasticity. Our team is working to determine the composition and distribution of proteins and lipids in the synapse as well as understand how the activity alters their distribution. Ultimately, we seek to discover how the misregulation of protein and lipid compositions lead to synaptic dysfunction. Our studies make use of cutting-edge electron microscopy techniques in combination with biochemical and molecular approaches.

    Research Areas: microscopy, cell biology, proteins, lipids, molecular biology

    Lab Website

    Principal Investigator

    Shigeki Watanabe, Ph.D.

    Department

    Cell Biology

  • The Pathak Lab

    The Pathak lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. We develop novel imaging methods, computational models and visualization tools to ‘make visible’ critical aspects of cancer, stroke and neurobiology. Our research broadly encompasses the following areas: Functional and Molecular Imaging; Clinical Biomarker Development; Image-based Systems Biology and Visualization and Computational Tools. We are dedicated to mentoring the next generation of imagers, biomedical engineers and visualizers. Additional information can be found at www.pathaklab.org or by emailing Dr. Pathak.

    Research Areas: microscopy, vasculature, tumors, systems biology, functional magnetic resonance imaging, 3D imaging, biomarkers, optical imaging, angiogenesis, cancer imaging

  1. 1