Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 11 to 20 of 26 results for metabolism

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Joseph Cofrancesco Jr. Lab

    Research in the Joseph Cofrancesco Jr. Lab focuses primarily on health care for HIV-positive patients. Our recent studies have explored topics such as HIV antiretroviral treatments, HIV resistance and the long-term complications of HIV treatment. In addition, we are part of the U.S. Fat Redistribution and Metabolism (FRAM) study and have had a long-standing involvement in projects that examine metabolic and fat complications in Thailand.

    Research Areas: antiretroviral therapies, infectious disease, AIDS, disease resistance, metabolism, HIV

    Principal Investigator

    Joseph Cofrancesco, M.D., M.P.H.

    Department

    Medicine

  • Kristine Glunde Lab

    The Glunde lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab is developing mass spectrometry imaging as part of multimodal molecular imaging workflows to image and elucidate hypoxia-driven signaling pathways in breast cancer. They are working to further unravel the molecular basis of the aberrant choline phospholipid metabolism in cancer. The Glunde lab is developing novel optical imaging agents for multi-scale molecular imaging of lysosomes in breast tumors and discovering structural changes in Collagen I matrices and their role in breast cancer and metastasis.

    Research Areas: breast cancer, mass spectrometry, imaging, cancer, metastasis, metabolism, optical imaging

  • Le Cancer Metabolism Research Lab

    Dr. Anne Le's research primarily focuses on cancer metabolism and metabolic aspects of other diseases. Using metabolomics technologies, her work has led to breakthrough discoveries revealing several characteristic features of the metabolism of cancer. One of these, the dependence of cancer cells on glutamine metabolism, has translated into clinical trials as a novel therapy for cancer patients. Furthermore, her lab tracked the metabolic pathways in the remaining tumor cells after this novel therapy and identified the best-suited drugs for combined synergistic therapy. The depth of Dr. Le's expertise in cancer metabolism, in collaboration with other experts at Johns Hopkins, will lead to improved outcomes for cancer therapy.

    Research Areas: cancer, metabolomics technologies, cancer metabolism

    Lab Website

    Principal Investigator

    Anne Le, H.D.R., M.D., M.S.

    Department

    Oncology
    Pathology

  • Marie-France Penet Lab

    The Penet lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab research focuses on using multimodal imaging techniques to better understand the microenvironment and improve cancer early detection, especially in ovarian cancer. By combining MRI, MRS and optical imaging, we are studying the tumor microenvironment to understand the role of hypoxia, tumor vascularization, macromolecular transport and tumor metabolism in tumor progression, metastasis and ascites formation in orthotopic models of cancer. We also are studying the role of tumor-associated macrophages in tumor progression.

    Research Areas: tumor vascularization, prostate cancer, tumor metabolism, magnetic resonance spectroscopy, macromolecular transport, optical imaging, pancreatic cancer, MRI, tumor-associated macrophages, hypoxia, ovarian cancer, cancer-induced cachexia, cancer imaging

  • Michael Kornberg Lab

    Our laboratory conducts basic and translational research aimed at better understanding the pathogenesis of multiple sclerosis (MS) and the role of the immune system in CNS disease, particularly the processes that drive progressive disability such as neurodegeneration and remyelination failure. We currently have three parallel research programs: 1. Metabolism as a modulator of MS: We are studying how basic metabolic pathways regulate the immune system and how these pathways might be exploited to protect neurons and myelin-forming oligodendrocytes from injury. 2. Identifying pathways by which nitric oxide (NO) and other free radicals cause neuronal and axonal damage. Our lab is identifying specific signaling pathways initiated by NO and other free radicals that can be targeted by drugs to produce neuroprotection. 3. Modulating the innate immune system in MS: In collaboration with others at Johns Hopkins, we are studying ways to enhance the reparative functions of microglia while preventi...ng maladaptive responses. This work has identified bryostatin-1 as a potential drug that may be re-purposed for this task. view more

    Research Areas: multiple sclerosis

  • MR Research Laboratory

    The MR Research Laboratory focuses on developing and applying nuclear magnetic resonance (NMR) techniques and on measuring energy metabolites and metabolic fluxes with phosphorous (31P) and proton (1H) MRS in patients with ischemia, infarction and heart failure.

    Specific studies include: Phosphorus MR studies of myocardial energy metabolism in human heart: We have used spatially localized phosphorus MR spectroscopy (MRS) to noninvasively measure high-energy phosphate metabolites such as ATP (adenosine triphosphate) and phosphocreatine (PCr) in the heart. The PCr/ATP ratio can change during stress-induced ischemia, and a protocol for stress-testing in the MR system has been developed which can detect the changes noninvasively in the anterior wall. Additionally, we've developed methods for noninvasively measuring the creatine kinase (CK) ATP energy supply and used it to measure the CK ATP energy supply in the healthy heart at rest and exercise, in human myocardial infarction, and in ...human heart failure.

    Interventional MRI technology: We are developing an RF dosimeter that measures incident-specific absorption rates applied during MRI independent of the scanner and developing MRI-safe internal detectors for higher field use. Outcomes of this research include the "MRI endoscope" that provides real-time, high-resolution views of vessel anatomy and a radiometric approach to detect any local heating associated with the device.
    view more

    Research Areas: infarction, magnetic resonance, creatine kinase metabolism, heart failure, MRI, ischemic disease, nuclear magnetic resonance

  • Namandje N. Bumpus Lab

    The Bumpus Laboratory uses mass spectrometry and molecular pharmacology-based approaches to study the biotransformation of clinically used drugs by the cytochromes P450s. Specifically, we are studying ways to define a role for cytochrome P450-dependent metabolites in the drug-induced acute liver failure that is associated with certain antiviral drugs used to treat HIV and hepatitis C. Our long-term goal is to gain information that can be used to develop therapies that are devoid of toxic events by preventing the formation of a toxic metabolite or by developing strategies for preventing toxicity using concomitant therapy.

    Research Areas: antiviral therapy, drug metabolism, mass spectrometry, HIV, drugs, cellular signaling, cytochromes P450, pharmacology, molecular pharmacology, hepatitis C, metabolomics

    Lab Website

    Principal Investigator

    Namandje Bumpus, Ph.D.

    Department

    Medicine

  • Noah Lechtzin Lab

    Research in the Noah Lechtzin Lab investigates several important aspects of cystic fibrosis (CF), including the impact of antibiotic-resistant bacterial infections in CF patients and new therapy options for individuals with CF. Our research into new CF therapies has included studies on home electronic symptom and lung function monitoring, transbronchial needle aspiration and bedside percutaneous endoscopic gastrostomy tube placement. We also explore the role of metabolic complications in CF patients by examining how the disease is impacted by factors such as vitamin D deficiency, osteoporosis and testosterone deficiency.

    Research Areas: osteoporosis, cystic fibrosis, pulmonary medicine, metabolism, antibiotic-resistant bacterial infections, testosterone

    Principal Investigator

    Noah Lechtzin, M.D., M.H.S.

    Department

    Medicine

  • Rita Kalyani Lab

    Research in the Rita Kalyani Lab examines the decreased physical functioning observed in patients with diabetes as they age. Through several ongoing epidemiological cohorts, we are investigating the association of high blood glucose and high insulin levels with accelerated muscle loss, and possible contributions to the physical disability observed in diabetes. We are currently involved in clinical studies that aim to understand the underlying mechanisms for these associations and to facilitate the development of novel strategies to prevent muscle loss and disability in people with diabetes.

    Research Areas: metabolism, insulin, diabetes, cardiovascular diseases, endocrinology, blood glucose

    Principal Investigator

    Rita Kalyani, M.D., M.H.S.

    Department

    Medicine

  • Suzanne Jan de Beur Lab

    Researchers in the Suzanne Jan de Beur Lab are interested in bone and mineral metabolism, endocrinology and osteoporosis. In addition, we focus on hormonal regulators of phosphate homeostasis, parathyroid hormone signaling and the molecular basis of hypophosphatemic disorders.

    Research Areas: osteoporosis, metabolism, diabetes, endocrinology

    Principal Investigator

    Suzanne Jan De Beur, M.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3