Research Lab Results for magnetic resonance
-
Cardiology Bioengineering Laboratory
Lab WebsiteThe Cardiology Bioengineering Laboratory, located in the Johns Hopkins Hospital, focuses on the... applications of advanced imaging techniques for arrhythmia management. The primary limitation of current fluoroscopy-guided techniques for ablation of cardiac arrhythmia is the inability to visualize soft tissues and 3-dimensional anatomic relationships.
Research Areas: magnetic resonance imaging, CPR models, cardiac mechanics, MRI-guided therapy, ischemic tachycardia, arrhythmia, cardiology, sudden cardiac death, cardiopulmonary resuscitation, computational modeling
Implementation of alternative advanced modalities has the potential to improve complex ablation procedures by guiding catheter placement, visualizing abnormal scar tissue, reducing procedural time devoted to mapping, and eliminating patient and operator exposure to radiation.
Active projects include
• Physiological differences between isolated hearts in ventricular fibrillation and pulseless electrical activity
• Successful ablation sites in ischemic ventricular tachycardia in a porcine model and the correlation to magnetic resonance imaging (MRI)
• MRI-guided radiofrequency ablation of canine atrial fibrillation, and diagnosis and intervention for arrhythmias
• Physiological and metabolic effects of interruptions in chest compressions during cardiopulmonary resuscitation
Henry Halperin, MD, is co-director of the Johns Hopkins Imaging Institute of Excellence and a
professor of medicine, radiology and biomedical engineering. Menekhem M. Zviman, PhD is the laboratory manager.
view more -
Courtney Robertson Lab
Lab WebsiteWork in the Courtney Robertson Lab is focused on identifying interventions that could minimize ...the neurological deficits that can persist after pediatric traumatic brain injury (TBI). One study used a preclinical model to examine potential disruption of mitochondrial function and alterations in cerebral metabolism. It was found that a substantial amount of mitochondrial dysfunction is present in the first six hours after TBI. In addition, we are using nuclear magnetic resonance spectroscopy to evaluate global and regional alterations in brain metabolism after TBI. We're also collaborating with researchers at the University of Pennsylvania to compare mitochondrial function after head injury in different clinically relevant models. view more
Research Areas: traumatic brain injuries, magnetic resonance spectroscopy, pediatrics, mitochondria, pediatric critical care medicine -
Frueh Laboratory
Lab WebsiteThe Frueh Laboratory uses nuclear magnetic resonance (NMR) to study how protein dynamics can be... modulated and how active enzymatic systems can be conformed. Non-ribosomal peptide synthetases (NRPS) are large enzymatic systems that biosynthesize secondary metabolites, many of which are used by pharmaceutical scientists to produce drugs such as antibiotics or anticancer agents. Dr. Frueh's laboratory uses NMR to study inter- and intra-domain modifications that occur during the catalytic steps of NRPS. Dr. Frueh and his team are constantly developing new NMR techniques to study these complicated enzymatic systems. view more
Research Areas: enzymes, proteomics, imaging, drugs, antibiotics, nuclear magnetic resonance, molecular biology -
James Pekar Lab
Lab WebsiteHow do we see, hear, and think? More specifically, how can we study living people to understand... how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make "movies" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology.
Research Areas: magnetic resonance, functional magnetic resonance imaging, radiology
Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techniques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
view more -
Jinyuan Zhou Lab
Lab WebsiteDr. Zhou's research focuses on developing new in vivo MRI and MRS methodologies to study brain ...function and disease. His most recent work includes absolute quantification of cerebral blood flow, quantification of functional MRI, high-resolution diffusion tensor imaging (DTI), magnetization transfer mechanism, development of chemical exchange saturation transfer (CEST) technology, brain pH MR imaging, and tissue protein MR imaging. Notably, Dr. Zhou and his colleagues invented the amide proton transfer (APT) approach for brain pH imaging and tumor protein imaging. His initial paper on brain pH imaging was published in Nature Medicine in 2003 and his most recent paper on tumor treatment effects was published in Nature Medicine in 2011. A major part of his current research is the pre-clinical and clinical imaging of brain tumors, strokes, and other neurologic disorders using the APT and other novel MRI techniques. The overall goal is to achieve the MRI contrast at the protein and peptide level without injection of exogenous agents and improve the diagnostic capability of MRI and the patient outcomes. view more
Research Areas: magnetic resonance, functional magnetic resonance imaging, brain, stroke -
Lima Lab
Lab WebsiteThe Lima Lab’s research is concentrated on the development and application of imaging and techn...ology to address scientific and clinical problems involving the heart and vascular system.
Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction
Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.
Current projects include:
• The Coronary Artery Risk Development in Young Adults (CARDIA) Study
• The MESA (Multi-Ethnic Study of Atherosclerosis) Study
• The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study
Joao Lima, MD, is a professor of medicine, radiology and epidemiology at the Johns Hopkins School of Medicine. view more -
Mark Liu Lab
Research in the Mark Liu Lab explores several areas of pulmonary and respiratory medicine. Our ...studies primarily deal with allergic inflammation, chronic obstructive pulmonary disease (COPD) and asthma, specifically immunologic responses to asthma. We have worked to develop a microfluidic device with integrated ratiometric oxygen sensors to enable long-term control and monitoring of both chronic and cyclical hypoxia. In addition, we conduct research on topics such as the use of magnetic resonance angiography in evaluating intracranial vascular lesions and tumors as well as treatment of osteoporosis by deep sea water through bone regeneration. view more
Research Areas: respiratory system, pulmonary medicine, asthma, COPD, inflammation, hypoxia -
MR Research Laboratory
Lab WebsiteThe MR Research Laboratory focuses on developing and applying nuclear magnetic resonance (NMR) ...techniques and on measuring energy metabolites and metabolic fluxes with phosphorous (31P) and proton (1H) MRS in patients with ischemia, infarction and heart failure.
Research Areas: infarction, magnetic resonance, creatine kinase metabolism, heart failure, MRI, ischemic disease, nuclear magnetic resonance
Specific studies include: Phosphorus MR studies of myocardial energy metabolism in human heart: We have used spatially localized phosphorus MR spectroscopy (MRS) to noninvasively measure high-energy phosphate metabolites such as ATP (adenosine triphosphate) and phosphocreatine (PCr) in the heart. The PCr/ATP ratio can change during stress-induced ischemia, and a protocol for stress-testing in the MR system has been developed which can detect the changes noninvasively in the anterior wall. Additionally, we've developed methods for noninvasively measuring the creatine kinase (CK) ATP energy supply and used it to measure the CK ATP energy supply in the healthy heart at rest and exercise, in human myocardial infarction, and in human heart failure.
Interventional MRI technology: We are developing an RF dosimeter that measures incident-specific absorption rates applied during MRI independent of the scanner and developing MRI-safe internal detectors for higher field use. Outcomes of this research include the "MRI endoscope" that provides real-time, high-resolution views of vessel anatomy and a radiometric approach to detect any local heating associated with the device.
view more -
MRB Molecular Imaging Service Center and Cancer Functional Imaging Core
Lab WebsiteEstablished in 2004, the MRB Molecular Imaging Service Center and Cancer Functional Imaging Cor...e provides comprehensive molecular and functional imaging infrastructure to support the imaging research needs of the Johns Hopkins University faculty. Approximately 55-65 different Principal Investigators use the center annually.
Research Areas: cancer research, radiology, Radiological Science
The MRB Molecular Imaging Service Center is located behind the barrier within the transgenic animal facility in the basement of MRB. The MRB location houses a 9.4T MRI/S scanner for magnetic resonance imaging and spectroscopy, an Olympus multiphoton microscope with in vivo imaging capability, a PET-CT scanner, a PET-SPECT scanner, and a SPECT-CT scanner for nuclear imaging, multiple optical imaging scanners including an IVIS Spectrum, and a LI COR near infrared scanner, and an ultrasound scanner.
A brand new satellite facility in CRB2-LB03 opens in 2019 to house a simultaneous 7T PET-MR scanner, as well as additional imaging equipment, to meet the growing molecular and functional imaging research needs of investigators.
To image with us, MRB Animal Facility training and Imaging Center Orientation are required to obtain access to the MRB Animal Facility and to the MRB Molecular Imaging Center (Suite B14). The MRB Animal Facility training group meets at 9:30 am on Thursdays at the Turner fountain/MRB elevator lobby. The Imaging Center orientation group meets at 1 pm on Thursdays at the Turner fountain, and orientation takes approximately 30 min. Please keep in mind that obtaining access to both facilities requires time, so please plan in advance. view more -
Neuroimaging and Modulation Laboratory (NIMLAB)
Lab WebsiteThe neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition... and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI. view more
Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation
- 1
- 2