Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 23 of 23 results for learning

Show: 10 · 20 · 50

  1. 1
  • Albert Lau Lab

    The Lau Lab uses a combination of computational and experimental approaches to study the atomic and molecular details governing the function of protein complexes involved in intercellular communication. We study ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels that mediate the majority of excitatory synaptic transmission in the central nervous system. iGluRs are important in synaptic plasticity, which underlies learning and memory. Receptor dysfunction has been implicated in a number of neurological disorders.

    Research Areas: central nervous system, synaptic plasticity, computational biology, intracellular communication, ionotropic glutamate receptors, neurological disorders

  • Bakker Memory Lab

    Research in the Bakker Memory Laboratory is focused on understanding the mechanisms and brain networks underlying human cognition with a specific focus on the mechanisms underlying learning and memory and the changes in memory that occur with aging and disease. We use a variety of techniques including neuropsychological assessments, experimental behavioral assessments and particularly advanced neuroimaging methods to study these questions in young and older adults and patients with mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease and epilepsy.

    Through our collaborations with investigators in both basic science and clinical departments, including the departments of Psychiatry and Behavioral Sciences, Psychological and Brain Sciences, Neurology and Public Health, our research also focuses on brain systems involved in spatial navigation and decision-making as well as cognitive impairment in neuropsychiatric conditions such as schizophrenia, eating disorders, obsessiv...e-compulsive disorders, depression and anxiety. view more

    Research Areas: epilepsy, depression, Parkinson's disease, Alzheimer's disease

  • David Linden Lab

    The David Linden Laboratory has used both electrode and optical recording in cerebellar slice and culture model systems to explore the molecular requirements for induction and expression of these phenomena. Along the way, we discovered a new form of plasticity. In addition, we have expanded our analysis to include use-dependent synaptic and non-synaptic plasticity in the cerebellar output structure, the deep nuclei.

    Our investigations are central to understanding the cellular substrates of information storage in a brain area where the behavioral relevance of the inputs and outputs is unusually well defined. In addition, our investigations have potential clinical relevance for cerebellar motor disorders and for disorders of learning and memory generally.

    Research Areas: motor learning, synaptic plasticity, neurobiology, memory, cerebellum, brain

    Principal Investigator

    David Linden, Ph.D.

    Department

    Neuroscience

  • Diane Griffin Lab

    Research in the Diane Griffin Lab focuses on the viral, cellular and immunologic determinants of diseases caused by alphaviruses and the measles virus. Our current studies aim to understand the immune-system mechanisms behind viral clearance and disease enhancement. Our team is also working to understand the pathogenesis of the measles virus, with a focus on developing new vaccines and learning how the virus induces immunosuppression.

    Research Areas: immunology, vaccines, measles, alphavirus, encephalitis

    Principal Investigator

    M. Griffin, M.D., Ph.D.

    Department

    Medicine

  • Health Technologies

    The APL Health Technologies program's functional restoration focus area includes two portfolios with particular relevance in neurology. The first focuses on motor restoration, using teams with expertise in robotics, microsensors, haptics, artificial intelligence and brain-machine interfaces. One set of projects, currently sponsored by Defense Advanced Research Projects Agency (DARPA) and the Henry Jackson Foundation, centers on a bionic arm technology that integrates with bone and muscle in amputee patients, restoring a variety of normal functions to the patient like cooking, folding clothing, hand shaking, and hand gestures. This portfolio explores direct brain control of the bionic limb, through work led by Dr. Nathan Crone of Johns Hopkins Neurology and Dr. Pablo Celnik of Johns Hopkins Physical Medicine and Rehabilitation. Another set of related work aims to restore motor function by better understanding and using brain signals through brain-machine interfaces. This work is current...ly funded by the National Science Foundation and industry partners. Also in the functional restoration focus area is the vision restoration portfolio. In a partnership with Second Sight and the Mann Fund, the work aims to enhance function of a bionic eye, which couples a retinal implant with a computer vision system to restore vision in blind individuals with retinitis pigmentosa. Current work in the human-machine teaming focus area includes a portfolio that is building artificial intelligence systems that improve radiologic and ophthalmic diagnostics. Another portfolio, currently focused in the surgical setting, enhances the physician's ability to visualize and manipulate the physical world, such as with orthopaedic surgery. view more

    Research Areas: robotics, imaging systems, machine learning, data fusion, artificial intelligence

    Lab Website

    Principal Investigator

    Adam Cohen, M.D.

    Department

    Neurology

  • Human Brain Physiology and Stimulation Lab

    The Human Brain Physiology and Stimulation Laboratory studies the mechanisms of motor learning and develops interventions to modulate motor function in humans. The goal is to understand how the central nervous system controls and learns to perform motor actions in healthy individuals and in patients with neurological diseases such as stroke. Using this knowledge, we aim to develop strategies to enhance motor function in neurological patients.

    To accomplish these interests, we use different forms of non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), as well as functional MRI and behavioral tasks.

    Research Areas: motor learning, TMS, brain stimulation, neurologic rehabilitation, tDCS, stroke rehabilitation, stroke recovery

  • Kathleen Sutcliffe Lab

    Researchers in the Kathleen Sutcliffe Lab study organizational adaptability, reliability and resilience. Our work examines how factors such as management teams, group dynamics, information search processes, communication and learning processes affect organizational performance. Our team also studies how an organization’s design and culture affect members’ abilities to sense, manage and respond to dynamic demands. Additionally, our work seeks to better understand the factors that promote individual and organizational resilience.

    Research Areas: organizational dynamics, medical decision making, safety

  • Laboratory of Auditory Neurophysiology

    Research in the Laboratory of Auditory Neurophysiology aims to understand brain mechanism responsible for auditory perception and vocal communication in a naturalistic environment. We are interested in revealing neural mechanisms operating in the cerebral cortex and how cortical representations of biologically important sounds emerge through development and learning.

    We use a combination of state-of-the-art neurophysiological techniques and sophisticated computational and engineering tools to tackle our research questions.

    Current research in our laboratory includes the following areas (1) neural basis of auditory perception, (2) neural mechanisms for vocal communication and social interaction, and (3) cortical processing of cochlear implant stimulation.

    Research Areas: neurophysiology, neuroengineering, audiology, cochlear implant, learning, language

    Lab Website

    Principal Investigator

    Xiaoqin Wang, Ph.D.

    Department

    Biomedical Engineering

  • Laboratory of Vestibular NeuroAdaptation

    The Laboratory of Vestibular NeuroAdaptation investigates mechanisms of gaze stability in people with loss of vestibular sensation. A bulk of our research investigates motor learning in the vestibulo-ocular reflex (VOR) using different types of error signals. In addition, we investigate the synergistic relationship between the vestibular and saccadic oculomotor systems as trainable strategies for gaze stability. We are particularly interested in developing novel technologies to assess and deliver improved rehabilitation outcomes. We are validating a hand-held computer tablet for assessment of sensorimotor function and participating in a clinical trial comparing traditional vestibular rehabilitation against a device developed in our laboratory that can unilaterally or bilaterally strengthen the VOR.

    Members of the lab include physical therapists, physicians, engineers, statisticians and post-doctoral fellows. The laboratory is supported by generous grant funding from NASA, the NIH, ...the DOD and grateful patients
    view more

    Research Areas: gaze stability, vestibular sensation, vestibulo-ocular reflex, rehabilitation, sensorimotor functions

  • Mark Dredze Lab

    The Mark Dredze Lab investigates topics such as natural language processing, speech, machine learning and intelligent user interfaces. Our team is currently exploring several key health information applications, including information extraction from social media and biomedical and clinical texts. Our recent research in these areas include vaccine communication during the Disneyland measles outbreak; the validity of online drug forums for estimating trends in drug use; and the use of Twitter to examine social rationales for vaccine refusal.

    Research Areas: machine learning, health sciences informatics, health information, social media

    Principal Investigator

    Mark Dredze, M.A., Ph.D.

    Department

    Health Sciences Informatics

  • Marshall Shuler Laboratory

    The Marshall Shuler Laboratory aims to understand the means by which brain reward systems convey reward value, expectancy, quality, probability and utility, and the rules by which such activity is used to affect synaptic weight within brain networks to encode stimulus-action associations. We use an interdisciplinary approach combining multisite recordings of neural activity, targeted pharmacological manipulation, viral-mediated gene transfer and behavior to study the neural mechanisms of reward-based interval learning in the primary visual cortex.

    Research Areas: neural circuits, reward-based systems, brain, vision, pharmacology

    Lab Website

    Principal Investigator

    Marshall Shuler, Ph.D.

    Department

    Neuroscience

  • Maura McGuire Lab

    The Maura McGuire Lab focuses on the improvement of quality and safety in ambulatory medicine through care management, point-of-care laboratory testing, and electronic health records and care delivery optimization. We also study the use of assessment and technology to augment learning in health care professionals and primary care physicians.

    Research Areas: primary care, educational technology, safety, point-of-care diagnostics, care coordination, electronic health records

    Principal Investigator

    Maura McGuire, M.D.

    Department

    Medicine

  • Michael A. Jacobs Lab

    The Jacobs lab is within the Division of Cancer Imaging Research in the Department of Radiology and Radiological Science. The lab translates radiological imaging (MRI/PET/CT) from research to the clinical setting. The Jacobs lab is establishing the use of multi-parametric/multinuclear/modality imaging to monitor treatment response in different cancers and co-developed a new metric for DWI/ADC mapping to discern treatment response. They are developing and implementing a new method for diagnosis of cancer using machine and deep learning to measure different types of lesions. The Jacobs lab is also developing novel segmentation of radiological images using non-linear dimensionality reduction. In addition, we are investigating methods to integrate Radiomics and Informatics and prognostic markers for disease. Other research areas include diagnostic medical physics and novel computer science applications. The medical physics research includes MRI quality assessments, X-ray, fluoroscopy, ultr...asound and applications to therapeutic medical physics. We are developing a residency using the Commission on Accreditation of Medical Physics Education Program in Diagnostic Medical Physics. view more

    Research Areas: treatment response, PET/CT, prostate, cancer, metastasis, pancreatic disease, liver diseases, cancer imaging

  • Neuroimaging and Modulation Laboratory (NIMLAB)

    The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.

    Research Areas: cognition, alcohol, functional magnetic resonance imaging, imaging, aging, neuroscience, neuroimaging, transcranial magnetic stimulation

    Lab Website

    Principal Investigator

    John Desmond, M.S., Ph.D.

    Department

    Neurology

  • Ocular Motor Physiology Laboratory

    Our research is directed toward how the brain controls the movements of the eyes (including eye movements induced by head motion) using studies in normal human beings, patients and experimental animals. The focus is on mechanisms underlying adaptive ocular motor control. More specifically, what are mechanisms by which the brain learns to cope with the changes associated with normal development and aging as well as the damage associated with disease and trauma? How does the brain keep its eye movement reflexes properly calibrated? Our research strategy is to make accurate, quantitative measures of eye movements in response to precisely controlled stimuli and then use the analytical techniques of the control systems engineer to interpret the findings.

    Research areas: 1) learning and compensation for vestibular disturbances that occur either within the labyrinth or more centrally within the brain, 2) the mechanisms by which the brain maintains correct alignment of the eyes to prevent d...iplopia and strabismus, and 3) the role of ocular proprioception in localizing objects in space for accurate eye-hand coordination.
    view more

    Research Areas: diplopia, Labyrinth, eye movement, strabismus, vestibular

  • Paul Worley Lab

    The Paul Worley Lab examines the molecular basis of learning and memory. In particular, we cloned a set of immediate early genes (IEGs) that are rapidly transcribed in neurons involved in information processing, and that are essential for long term memory. IEG proteins can directly modify synapses and provide insight into cellular mechanisms that support synapse-specific plasticity.

    Research Areas: synaptic plasticity, neurons, memory, learning, immediate early genes

    Lab Website

    Principal Investigator

    Paul Worley, M.D.

    Department

    Neuroscience

  • Robert Bollinger Lab

    The key research interests in the Robert Bollinger Lab include identifying biological and behavioral risk factors for HIV transmission as well as characterizing the clinical progression and treatment of HIV and related infectious diseases. We also have a long-standing interest in optimizing health care capacity and delivery in settings with limited resources. Our work includes implementing science research projects to explore the effectiveness of initiatives such as task-shifting, clinical education, distance learning and mobile health programs as a way to improve health care in these locations.

    Research Areas: mobile health, international health, infectious disease, HIV, public health, point-of-care diagnostics, tropical medicine, tuberculosis, health care capacity

    Principal Investigator

    Robert Bollinger, M.D., M.P.H.

    Department

    Medicine

  • Robert Shochet Lab

    The Robert Shochet Lab focuses on medical education research, including the impact of learning communities on students' perceptions of the learning environment in medical school.

    Research Areas: medical education, learning communities

    Principal Investigator

    Robert Shochet, M.D.

    Department

    Medicine

  • Ruth Faden Lab

    Research in the Ruth Faden Lab focuses on biomedical ethics and health policy. Our specific areas of interest include justice theory; national and global challenges in learning health care systems, health-system design and priority setting; access global investments benefits in biomedical research; and ethical challenges in biomedical science and women’s health.

    Research Areas: genetics, biomedical engineering, health care policy, women's health, bioethics

    Principal Investigator

    Ruth Faden, Ph.D.

    Department

    Medicine

  • Spinal Column Biomechanics Lab

    The Spinal Column Biomechanics Laboratory focuses on the study of various spinal pathologies. The Biomechanics Laboratory studies a wide array of tools and techniques in order to advance spinal surgery for the benefit of patients. With a team of researchers, engineers, and neurosurgeons, the Biomechanics Laboratory participates in the newest developments in applied and translational research. Our facility alongside the International Center for Orthopaedic Advancement at the Johns Hopkins Bayview Medical Center serves as a premiere learning institute. The laboratory not only conducts novel biomechanical studies but also functions as a teaching facility for neurosurgical trainees interested in mastering highly specialized or technical procedures.The Spinal Column Biomechanics Laboratory specializes in applied mechanics, force vector analysis, spinal instrumentation testing and development of novel spinal reconstructions.

    Research Areas: spine

    Lab Website

    Principal Investigator

    Ali Bydon, M.D.

    Department

    Neurosurgery

  • Suchi Saria Lab

    The Suchi Saria Lab, part of the Institute for Computational Medicine, explores topics within the fields of machine learning and computational statistics, with a focus on computational solutions for problems in health informatics. Our team investigates the applications of machine learning and computational statistics to domains where one has to draw inferences from observing a complex, real-world system evolve over time. We use Bayesian and probabilistic graphical modeling approaches to address the challenges that emerge with modeling and prediction in real-world temporal systems.

    Research Areas: mobile health, machine learning, patient safety, informatics, big data

    Principal Investigator

    Suchi Saria, M.Sc., Ph.D.

    Department

    Health Sciences Informatics

  • Vikram Chib Lab

    The goals of the Vikram Chib Lab are to understand how the nervous system organizes the control of movement and how incentives motivate our behaviors. To better understand neurobiological control, our researchers are seeking to understand how motivational cues drive our motor actions. We use an interdisciplinary approach that combines robotics with the fields of neuroscience and economics to examine neuroeconomics and decision making, motion and force control, haptics and motor learning, image-guided surgery and soft-tissue mechanics.

    Research Areas: soft-tissue mechanics, robotics, motor learning, neuroeconomics, movement, neurobiological control, neuroscience, image-guided surgery, economics, decision making, nervous system

  • Zanvyl Krieger Mind/Brain Institute

    The Zanvyl Krieger Mind/Brain Institute is dedicated to the study of the neural mechanisms of higher brain functions using modern neurophysiological, anatomical and computational techniques. Our researchers use various approaches to understand information processing and its influence on perception, memory, abstract thought, complex behavior and consciousness. Systems and cognitive laboratories use neurophysiology, brain imaging and psychophysics to develop a quantitative, network-level understanding of cognitive information processing. Other researchers use analytical approaches such as system identification, dimensionality reduction, information theory and network modeling to understand information processing. Other areas of research in the Institute include the study of how visual and tactile information processing leads to perception and understanding of two- and three-dimensional objects. Another focus is on neural processing and recognition of speech and other complex sounds. St...ill other laboratories study neural mechanisms of attention, memory formation, motor learning, decision-making and executive control of behavior. view less

    Research Areas: brain, neurophysiology, consciousness, neuroscience, perception

    Lab Website

    Principal Investigator

    Charles Connor, Ph.D.

    Department

    Neuroscience

  1. 1