Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 21 to 40 of 46 results for infectious disease

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Joseph Cofrancesco Jr. Lab

    Research in the Joseph Cofrancesco Jr. Lab focuses primarily on health care for HIV-positive patients. Our recent studies have explored topics such as HIV antiretroviral treatments, HIV resistance and the long-term complications of HIV treatment. In addition, we are part of the U.S. Fat Redistribution and Metabolism (FRAM) study and have had a long-standing involvement in projects that examine metabolic and fat complications in Thailand.

    Research Areas: antiretroviral therapies, infectious disease, AIDS, disease resistance, metabolism, HIV

    Principal Investigator

    Joseph Cofrancesco, M.D., M.P.H.

    Department

    Medicine

  • Justin Bailey Lab

    Research in the Justin Bailey Lab explores immune responses against hepatitis C virus (HCV), particularly neutralizing antibody responses, with the goal of guiding vaccine development against the virus. Recent studies have demonstrated that early and broad neutralizing antibody (nAb) responses against HCV are associated with HCV clearance, suggesting a key role for nAb in limiting HCV replication. The findings of this research will enhance understanding of how HIV infection may contribute to the lower rate of HCV clearance in HCV/HIV coinfected individuals, and the results could have implications for persistence of other viruses commonly occurring as coinfections with HIV.

    Research Areas: humoral immune response, vaccines, infectious disease, AIDS, HIV, hepatitis C

    Lab Website

    Principal Investigator

    Justin Bailey, M.D., Ph.D.

    Department

    Medicine

  • Karakousis Lab

    The Karakousis Lab is primarily focused on understanding the molecular basis of Mycobacterium tuberculosis persistence and antibiotic tolerance. A systems biology-based approach, including the use of several novel in vitro and animal models, in combination with transcriptional, proteomic, genetic, imaging, and computational techniques, is being used to identify host cytokine networks responsible for immunological control of M. tuberculosis growth, as well as M. tuberculosis regulatory and metabolic pathways required for bacillary growth restriction and reactivation. In particular, we are actively investigating the regulatory cascade involved in the mycobacterial stringent response. Another major focus of the lab is the development of host-directed therapies for TB, with the goal of shortening treatment and improving long-term lung function. Additional research interests include the development of novel molecular assays for the rapid diagnosis of latent TB infection and active TB diseas...e, and for the detection of drug resistance. view more

    Research Areas: diagnostics, persistence, infectious disease, Mycobacterium tuberculosis, host-directed therapy, latency, drugs, antibiotics, tuberculosis

    Lab Website

    Principal Investigator

    Petros Karakousis, M.D.

    Department

    Medicine

  • Kathleen Page Lab

    Research in the Kathleen Page Lab examines the impact of bovine colostrum (BC) on immune activation and HIV susceptibility, and aims to develop a point-of-care diagnostic test for histoplasmosis.

    Research Areas: histoplasmosis, infectious disease, HIV, Hispanic Americans

    Principal Investigator

    Kathleen Page, M.D.

    Department

    Medicine

  • Kawsar Rasmy Talaat Lab

    Research in the Kawsar Rasmy Talaat Lab focuses on international health and parasitology, with an emphasis on vaccines, avian influenza and pandemic influenza. Our team conducts clinical trials of vaccines for a range of diverse pathogens, including flu strains that have the potential to reach pandemic status. Our studies seek to evaluate the safety and immunogenicity of vaccine candidates. We also have a longstanding interest in tropical medicine.

    Research Areas: international health, vaccines, infectious disease, flu

    Principal Investigator

    Kawsar Talaat, M.D.

    Department

    Medicine

  • Lamichhane Lab

    The Lamichhane Lab strives to understand the fundamental mechanisms used by Mycobacterium tuberculosis to survive, grow and cause disease. Although our lab uses genetic and biochemical approaches to study this organism, we pursue questions irrespective of the expertise required to answer those questions. We work to identify the essential components of the peptidoglycan layer and how the physiology of this layer is maintained. We also explore what non-coding RNAs exist in M. tuberculosis and investigate what their relevance is to the physiology and virulence of this pathogen.

    Research Areas: biochemistry, infectious disease, Mycobacterium tuberculosis, genomics, tuberculosis, RNA

    Principal Investigator

    Gyanu Lamichhane, Ph.D.

    Department

    Medicine

  • Larry Chang Lab

    Research in the Larry Chang Lab focuses on innovative, multidisciplinary and pragmatic approaches to impacting the HIV/AIDS pandemic. Our research investigates ways to improve HIV/AIDS care in low- and middle-income settings through strategies that include quantitative methods, qualitative methods, community-based trial designs, and behavioral science and economic evaluations. In addition, we research mobile technologies for health (mHealth) strategies for improving global public health and clinical care, including novel applications for intimate-partner violence intervention, dengue surveillance, and HIV care, surveillance and prevention.

    Research Areas: global health, infectious disease, AIDS, HIV, mHealth

    Principal Investigator

    Larry Chang, M.D., M.P.H.

    Department

    Medicine

  • Mark Sulkowski Lab

    Research in the Mark Sulkowski Lab focuses on hepatitis B and hepatitis C. We've conducted clinical research related to the management of viral hepatitis, including novel agents. Other studies focus on adult patients at the Johns Hopkins site of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Hepatitis B Clinical Research Network as well as the National Institute of Allergy and Infectious Diseases Adult AIDS Clinical Trials Group.

    Research Areas: infectious disease, hepatitis B, hepatitis C

    Lab Website

    Principal Investigator

    Mark Sulkowski, M.D.

    Department

    Medicine

  • Maryam Jahromi Lab

    The Maryam Jahromi Lab researches infectious diseases such as influenza, tuberculosis, endocarditis, viral hemorrhagic fevers, brucellosis, Clostridium difficile and Crimean-Congo hemorrhagic fever. We are particularly interested in the impact of the influenza vaccine on systemic inflammation. Recent areas of focus include the relationship between influenza vaccination and cardiovascular outcomes, the emergence of Crimean-Congo hemorrhagic fever in Iran, and prospects for vaccines and therapies for Crimean-Congo hemorrhagic fever.

    Research Areas: vaccines, infectious disease, patient outcomes, inflammation, cardiovascular diseases, flu, Crimean-Congo hemorrhagic fever

    Principal Investigator

    Maryam Keshtkar Jahromi, M.D., M.P.H.

    Department

    Medicine

  • Maunank Shah Lab

    Work in the Maunank Shah Lab focuses on infectious disease modeling and health economics, and seeks to investigate new strategies for diagnosing HIV and tuberculosis (TB) in areas with limited resources, both domestically and abroad. Our primary focus is TB diagnostics, with studies examining the diagnostic test accuracy, cost-effectiveness and programmatic impact of emerging diagnostics. We have developed mobile health initiatives to incorporate video-based therapy for TB treatment, and we have a longstanding interest in interventions that help to reduce or prevent HIV transmission.

    Research Areas: health economics, mobile health, infectious disease, AIDS, HIV, tuberculosis

    Lab Website

    Principal Investigator

    Maunank Shah, M.D.

    Department

    Medicine

  • Michael Melia Lab

    Research in the Michael Melia Lab focuses primarily on nocardia infections, Lyme disease and hepatitis C. Our studies have included key topics such as risk factors for incident infections during hepatitis C treatment, racial differences in eligibility for hepatitis C treatment and misdiagnosis of Lyme arthritis using the Borrelia burgdorferi immunoblot testing method. We also have a longstanding interest in medical education and work on curriculum to improve the quality of education for medical students and interns.

    Research Areas: medical education, nocardia infections, infectious disease, AIDS, HIV, Lyme disease, hepatitis C

    Principal Investigator

    Michael Melia, M.D.

    Department

    Medicine

  • Natasha Chida Lab

    The Natasha Chida Lab investigates methods for using education and curriculum development to improve patient outcomes worldwide, primarily by optimizing education of physicians-in-training. Most recently, our team has worked to develop and evaluate an assessment tool for evaluating internal medicine residents’ understanding of tuberculosis diagnostics. Previous research includes a retrospective cohort study on the high proportion of extrapulmonary TB in a low-prevalence setting as well as an analysis of ways to define clinical excellence in adult infectious disease practice.

    Research Areas: medical education, patient outcomes, internal medicine, tuberculosis

    Principal Investigator

    Natasha Chida, M.D., M.S.P.H.

    Department

    Medicine

  • Peter Agre Lab

    Work in the Peter Agre Lab focuses on the molecular makeup of human diseases, particularly malaria, hemolytic anemias and blood group antigens. In 2003, Dr. Agre earned the Nobel Prize in Chemistry for discovering aquaporin water channels. Building on that discovery, our recent research has included studies on the protective role of the brain water channel AQP4 in murine cerebral malaria, as well as defective urinary-concentrating ability as a result of a complete deficiency in aquaporin-1. We also collaborate on scientific training and research efforts with 20 Baltimore-area labs and in field studies in Zambia and Zimbabwe.

    Research Areas: infectious disease, anemia, malaria

    Principal Investigator

    Peter Agre, M.D.

    Department

    Biological Chemistry

  • Photini Sinnis Lab

    Research in the Photini Sinnis Lab explores the fundamental biology of the pre-erythrocytic stages of malaria. Our team is focused on the sporozoite stage of Plasmodium, which is the infective stage of the malaria parasite, and the liver stages into which they develop. We use classic biochemistry, mutational analysis, and in vitro and in vivo assays to better understand the molecular interactions between the parasite and its mosquito and mammalian hosts. Our goal is to translate our findings to help develop treatments and a vaccine that target the malaria parasite.

    Research Areas: microbiology, biochemistry, infectious disease, parasites, malaria

    Principal Investigator

    Photini Sinnis, M.D.

    Department

    Medicine

  • Randall Packard Lab

    The Randall Packard Lab investigates topics in the field of the history of medicine. Our current work seeks to explore the global history of dengue fever. Research is focused on the emergence and global spread of dengue as well as efforts to understand and control the disease. Part of our research involves establishing a better understanding of the complex biological, economic, environmental and social conditions that enabled the disease to rapidly expand worldwide during the 20th century.

    Research Areas: dengue fever, Africa, infectious disease, public health, history of medicine

    Principal Investigator

    Randall Packard, Ph.D.

    Department

    History of Medicine

  • Raymond Reid Lab

    Research in the Raymond Reid Lab focuses on community health and pediatric infectious diseases among Native American populations; epidemiologic studies of enteric infections, Haemophilus influenzae, and pneumococcus; and field testing of vaccines and treatments.

    Research Areas: epidemiology, community health, vaccines, infectious disease, enteric infections

    Principal Investigator

    Raymond Reid, M.D.

    Department

    Medicine

  • Richard Chaisson Lab

    Research in the Richard Chaisson Lab primarily examines tuberculosis and HIV infection, with specific focus on global epidemiology, clinical trials, diagnostics and public health interventions. Our recent research has involved evaluating a molecular diagnostic test for tuberculosis in HIV patients; observing TB responses during treatment of pulmonary tuberculosis; and examining antiretroviral therapy adherence, virologic and immunologic outcomes in adolescents compared with adults in Southern Africa.

    Research Areas: global health, epidemiology, infectious disease, AIDS, HIV, tuberculosis

    Principal Investigator

    Richard Chaisson, M.D.

    Department

    Medicine

  • Robert Bollinger Lab

    The key research interests in the Robert Bollinger Lab include identifying biological and behavioral risk factors for HIV transmission as well as characterizing the clinical progression and treatment of HIV and related infectious diseases. We also have a long-standing interest in optimizing health care capacity and delivery in settings with limited resources. Our work includes implementing science research projects to explore the effectiveness of initiatives such as task-shifting, clinical education, distance learning and mobile health programs as a way to improve health care in these locations.

    Research Areas: mobile health, international health, infectious disease, HIV, public health, point-of-care diagnostics, tropical medicine, tuberculosis, health care capacity

    Principal Investigator

    Robert Bollinger, M.D., M.P.H.

    Department

    Medicine

  • Robert Gilman Lab

    Research in the Robert Gilman Lab focuses on disease control. Our work led to the development of microscopic-observation drug-susceptibility (MODS), a rapid tuberculosis diagnostic technique. We continue to conduct infectious disease research based at Peru’s Universidad Peruana Cayetano Heredia.

    Research Areas: international health, infectious disease, infections, infection control, parasitic diseases, disease control

    Principal Investigator

    Robert Gilman, M.D.

    Department

    Medicine

  • Schneck Lab

    Effective immune responses are critical for control of a variety of infectious disease including bacterial, viral and protozoan infections as well as in protection from development of tumors. Central to the development of an effective immune response is the T lymphocyte which, as part of the adaptive immune system, is central in achieving sterilization and long lasting immunity. While the normal immune responses is tightly regulated there are also notable defects leading to pathologic diseases. Inactivity of tumor antigen-specific T cells, either by suppression or passive ignorance allows tumors to grow and eventually actively suppress the immune response. Conversely, hyperactivation of antigen-specific T cells to self antigens is the underlying basis for many autoimmune diseases including: multiple sclerosis; arthritis; and diabetes. Secondary to their central role in a wide variety of physiologic and pathophysiologic responses my lab takes a broad-based approach to studying T cell re...sponses. view more

    Research Areas: t-cell responses, pathologic diseases, autoimmune diseases, pathology, immune system

    Lab Website

    Principal Investigator

    Jonathan Schneck, M.D., Ph.D.

    Department

    Pathology

  1. 1
  2. 2
  3. 3