Skip Navigation

Find a Research Lab

Research Lab Results for infections

Displaying 11 to 20 of 31 results
Results per page:
  • Gregory Kirk Lab

    Research in the Gregory Kirk Lab examines the natural history of viral infections — particularl...y HIV and hepatitis viruses — in the U.S. and globally. As part of the ALIVE (AIDS Linked to the Intravenous Experience) study, our research looks at a range of pathogenetic, clinical behavioral issues, with a special focus on non-AIDS-related outcomes of HIV, including cancer and liver and lung diseases. We use imaging and clinical, genetic, epigenetic and proteomic methods to identify and learn more about people at greatest risk for clinically relevant outcomes from HIV, hepatitis B and hepatitis C infections. Our long-term goal is to translate our findings into targeted interventions that help reduce the disease burden of these infections. view more

    Research Areas: global health, Hepatitis, Africa, AIDS, cancer, HIV, drugs, liver diseases
  • Haughey Lab: Neurodegenerative and Neuroinfectious Disease

    Lab Website
    Principal Investigator:
    Norman Haughey, Ph.D.
    Neurology
    Neurosurgery

    Dr. Haughey directs a disease-oriented research program that address questions in basic neurobi...ology, and clinical neurology. The primary research interests of the laboratory are:

    1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
    2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability.
    3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
    4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions.
    view more

    Research Areas: multiple sclerosis, PTSD, HAND, HIV
  • IndoUS Clinical Research

    Lab Website
    Principal Investigator:
    Amita Gupta, M.D., M.H.S.
    Medicine

    Our IndoUS team, based both in Baltimore and in India, specializes in international clinical re...search (cohort studies and clinical trials), public health implementation science and education in infectious diseases, HIV/AIDS, tuberculosis (TB), vaccine preventable illnesses, antimicrobial resistant infections, and more recently COVID. Since 2003, our work has been focused primarily on India, where we are engaged in several Indo-JHU and international research collaborations. We partner with several leading medical and research institutions in India (e.g. BJGMC, DY Patil, Hinduja Hospital, KEM, Bharati Vidyapeeth, NIRT, JIPMER, CMC, Medanta, IISER, YRG, IIT), as well as others in sub-Saharan Africa, US and Brazil. We are actively involved in the following consortia: 1) Indo-US Vaccine Action Program sponsored RePORT India TB research consortium, which is funded by the US National Institutes of Health (NIH) and the government of India, Department of Biotechnology. 2) RePORT International TB Research Consortium, a multilateral global consortia for TB research, 3) US NIH funded multi-country HIV and TB trials consortia of the AIDS Clinical Trials Group (ACTG) and the International Maternal Pediatric Adolescent AIDS Trials Network (IMPAACT) Network, 4) NIH and AmFAR funded IeDea HIV/TB Working Group and the Treat Asia-IeDEA HIV and TB epidemiology databases, and 5) CDC SHEPHERD AMR studies.

    Our group has been awarded research grants from the US NIH, US CDC, UNITAID, Indian government, and several philanthropic foundations to investigate infectious diseases of importance to India and beyond.
    view more

    Research Areas: international health, infectious disease, antimicrobial resistance, HIV, COVID in adults including pregnant women and children, tuberculosis
  • J. Marie Hardwick Laboratory

    Lab Website

    Our research is focused on understanding the basic mechanisms of programmed cell death in disea...se pathogenesis. Billions of cells die per day in the human body. Like cell division and differentiation, cell death is also critical for normal development and maintenance of healthy tissues. Apoptosis and other forms of cell death are required for trimming excess, expired and damaged cells. Therefore, many genetically programmed cell suicide pathways have evolved to promote long-term survival of species from yeast to humans. Defective cell death programs cause disease states. Insufficient cell death underlies human cancer and autoimmune disease, while excessive cell death underlies human neurological disorders and aging. Of particular interest to our group are the mechanisms by which Bcl-2 family proteins and other factors regulate programmed cell death, particularly in the nervous system, in cancer and in virus infections. Interestingly, cell death regulators also regulate many other cellular processes prior to a death stimulus, including neuronal activity, mitochondrial dynamics and energetics. We study these unknown mechanisms.

    We have reported that many insults can trigger cells to activate a cellular death pathway (Nature, 361:739-742, 1993), that several viruses encode proteins to block attempted cell suicide (Proc. Natl. Acad. Sci. 94: 690-694, 1997), that cellular anti-death genes can alter the pathogenesis of virus infections (Nature Med. 5:832-835, 1999) and of genetic diseases (PNAS. 97:13312-7, 2000) reflective of many human disorders. We have shown that anti-apoptotic Bcl-2 family proteins can be converted into killer molecules (Science 278:1966-8, 1997), that Bcl-2 family proteins interact with regulators of caspases and regulators of cell cycle check point activation (Molecular Cell 6:31-40, 2000). In addition, Bcl-2 family proteins have normal physiological roles in regulating mitochondrial fission/fusion and mitochondrial energetics to facilitate neuronal activity in healthy brains.
    view more

    Research Areas: cell death
  • Jonathan Zenilman Lab

    Principal Investigator:
    Jonathan Zenilman, M.D.
    Medicine

    The Jonathan Zenilman lab conducts research related to sexually transmitted diseases (STDs). We... are working to develop biological markers for sexual behavior to use in other research. The lab studies sexual risk behaviors in highly vulnerable populations and studies datasets from the Baltimore City Health Department to understand STD trends and behaviors. Additionally, we study nosocomial infections at Johns Hopkins Bayview Medical Center, with a focus on developing an antimicrobial control program. We also conduct clinical research related to the natural history and microbiology of chronic wounds in the outpatient setting. view more

    Research Areas: behavioral research, biomarkers, sexually transmitted diseases, nosocomial infections
  • Lamichhane Lab

    Lab Website
    Principal Investigator:
    Gyanu Lamichhane, Ph.D.
    Medicine

    Our research focuses on the biology of the peptidoglycan of Mycobacterium tuberculosis, the org...anism that causes tuberculosis, and Mycobacteroides abscessus, a related bacterium that causes opportunistic infections. We study basic mechanisms associated with peptidoglycan physiology but with an intent to leverage our findings to develop tools that will be useful in the clinic to treat mycobacterial infections.

    Peptidoglycan is the exoskeleton of bacteria that not only provides structural rigidity and cell shape but also several vital physiological functions. Breaching this structure is often lethal to bacteria. We are exploring fundamental mechanisms by which bacteria synthesize and preserve their peptidoglycan. Although our lab uses genetic, biochemical and biophysical approaches to study the peptidoglycan, we pursue questions irrespective of the expertise required to answer those questions. It is through these studies that we identified synergy between two beta-lactam antibiotics against select mycobacteria.
    view more

    Research Areas: biochemistry, infectious disease, Mycobacterium tuberculosis, genomics, tuberculosis, RNA
  • Lisa Maragakis Lab

    Principal Investigator:
    Lisa Maragakis, M.D., M.P.H.
    Medicine

    Researchers in the Lisa Maragakis Lab are interested in health care-acquired infections and ant...imicrobial-resistant Gram-negative bacilli. We are particularly interested in the epidemiology, prevention and management of these infections. view more

    Research Areas: epidemiology, infections, health care-acquired infections, resistant organisms
  • Michael Melia Lab

    Principal Investigator:
    Michael Melia, M.D.
    Medicine

    Research in the Michael Melia Lab focuses primarily on nocardia infections, Lyme disease and he...patitis C. Our studies have included key topics such as risk factors for incident infections during hepatitis C treatment, racial differences in eligibility for hepatitis C treatment and misdiagnosis of Lyme arthritis using the Borrelia burgdorferi immunoblot testing method. We also have a longstanding interest in medical education and work on curriculum to improve the quality of education for medical students and interns. view more

    Research Areas: medical education, nocardia infections, infectious disease, AIDS, HIV, Lyme disease, hepatitis C
  • Noah Lechtzin Lab

    Principal Investigator:
    Noah Lechtzin, M.D., M.H.S.
    Medicine

    Research in the Noah Lechtzin Lab investigates several important aspects of cystic fibrosis (CF...), including the impact of antibiotic-resistant bacterial infections in CF patients and new therapy options for individuals with CF. Our research into new CF therapies has included studies on home electronic symptom and lung function monitoring, transbronchial needle aspiration and bedside percutaneous endoscopic gastrostomy tube placement. We also explore the role of metabolic complications in CF patients by examining how the disease is impacted by factors such as vitamin D deficiency, osteoporosis and testosterone deficiency. view more

    Research Areas: osteoporosis, cystic fibrosis, pulmonary medicine, metabolism, antibiotic-resistant bacterial infections, testosterone
  1. 1
  2. 2
  3. 3
  4. 4
Create lab profile
Edit lab profile
back to top button