Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 20 of 35 results for immunology

Show: 10 · 20 · 50

  1. 1
  2. 2
  • Andrea Cox Lab

    Research in the Andrea Cox Lab explores the immune response in chronic viral infections, with a focus on HIV and the hepatitis C virus (HCV). In our studies, we examine the role of the immune response upon exposure to HCV by examining responses to HCV in a longitudinal, prospective group of high-risk individuals. This enables us to compare the innate, humoral and cellular immune responses to infection with clearance versus persistence. Through our findings, we seek to identify mechanisms of protective immunity against HCV infection and improve HCV vaccine design.

    Research Areas: virology, vaccines, viral immunology, HIV, hepatitis C, T cells

    Principal Investigator

    Andrea Cox, M.D., Ph.D.

    Department

    Medicine

  • Andrew Laboratory: Center for Cell Dynamics

    Researchers in the Center for Cell Dynamics study spatially and temporally regulated molecular events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems.

    Research Areas: immunology, cancer, epithelial tube, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Deborah Andrew, M.S., Ph.D.

    Department

    Cell Biology

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis and particularly the pathogenesis of nasal polyps.  Diverse techniques in molecular biology, immunology, physiology, and engineering are utilized to study epithelial cell innate immunity, olfactory loss, the sinus microbiome, and drug delivery to the nose and sinus cavities. Ongoing work explores how epithelial cells participate in the immune response and contribute to chronic sinonasal inflammation. The lab creates and employs transgenic mouse models of chronic sinusitis to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and rhinovirus, and with the University of Maryland to characterize the bacterial microbiome of the nose and sinuses in health and disease.

    Research Areas: nasal polyps, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, molecular biology

  • Antoine Azar Lab

    The Antoine Azar Lab conducts research on topics related to primary immunodeficiency diseases, allergies and lung disease. Specifically, we explore the role of primary immunodeficiency in certain difficult-to-treat chronic lung diseases, such as COPD, emphysema and asthma.

    Research Areas: emphysema, immunology, asthma, allergies, lung disease, COPD

    Principal Investigator

    Antoine Azar, M.D.

    Department

    Medicine

  • Arturo Casadevall Lab

    The Arturo Casadevall Lab uses a multidisciplinary approach to explore two key topics within microbiology and immunology: how microbes cause disease and how hosts can protect themselves against those microbes. Much of our research focuses on the fungus Cryptococcus neoformans, which frequently causes lung infections in people with impaired immunity. We also work with the microorganism Bacillus anthracis, a bacterium that causes anthrax and is frequently used in biological warfare. Our goal is to devise antibody-based countermeasures to protect against this and other similar threats.

    Research Areas: microbiology, immunology, vaccines, cryptococcus neoformans, tuberculosis

    Principal Investigator

    Arturo Casadevall, M.D., M.S., Ph.D.

    Department

    Medicine

  • Ashwin Balagopal Lab

    Research in the Ashwin Balagopal Lab examines innate immunology and hepatic inflammation. Specifically, we explore microbial translocation Kupffer cells in HIV- hepatitis C virus (HCV) coinfection, while also developing in situ liver studies of HIV-HCV pathogenesis. Previous work has focused on antiretroviral therapy, interferon sensitivity and virologic setpoint in HIV/hepatitis C virus coinfected patients.

    Research Areas: antiretroviral therapies, infectious disease, AIDS, HIV, hepatitis C

    Principal Investigator

    Ashwin Balagopal, M.D.

    Department

    Medicine

  • Chloe Thio Lab

    Research in the Chloe Thio lab focuses on several areas. First, HBV virology and immunology in HBV monoinfected and HIV-HBV co-infected individuals that will ultimately help develop a cure for HBV. Second, HCV infection in men who have sex with men. Third, non-alcoholic fatty liver disease with a focus on HIV-infected individuals. Fourth, host genetic determinants of spontaneous HBV recovery and HCV clearance.

    Research Areas: HIV-HBV co-infection, hepatitis B, genomics, hepatitis C, fatty liver

    Principal Investigator

    Chloe Thio, M.D.

    Department

    Medicine

  • Clinical Laboratory and Biomarkers Core

    The Clinical Laboratory and Biomarkers Cores will coordinate access to laboratory expertise, testing, training, specimen repositories and Good Clinical Laboratory Practices (GCLP). The goals of this core are to assure that all JHU HIV investigators have access to and utilize appropriate, validated and, where applicable, certified laboratory assays. The core will also maintain a biomarker specimen repository for storage cataloguing and utilization of biological specimens.

    Research Areas: virology, immunology, biomarkers, HIV, pathogenesis

    Lab Website

    Principal Investigator

    Craig W. Hendrix, M.D.

    Department

    Medicine

  • David Graham Lab

    The David Graham Lab studies the consequences of HIV interactions with the immune system, the resulting pathogenesis and how to sabotage these interactions. We apply advanced technologies like mass spectrometry to dissect processes at the molecular level. We are also actively involved in cardiovascular research and studies the ways proteins are organized into functional units in different cell types of the heart.

    Major projects in our lab are organized into three major areas: (1) H/SIV pathogenesis and neuropathogenesis, (2) Cardiovascular disease, and (3) High technology development

    Research Areas: immunology, mass spectrometry, HIV, cardiovascular, SIV, pathogenesis

    Principal Investigator

    David Graham, M.S., Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • David Sullivan Lab

    Research in the David Sullivan Lab focuses on malaria, including its diagnosis, treatment, molecular biology as it relates to iron, and pathology as it relates to severe anemia. We test and develop new malaria diagnostics — from real-time polymerase chain reaction (PCR) to novel urine and saliva detection platforms. This includes the adaptation of immuno-PCR (antibody coupled to DNA for PCR detection) to malaria and a lead blood stage drug that contains a quinine derivative used to treat malaria in the 1930s.

    Research Areas: molecular immunology, iron, anemia, malaria, molecular microbiology

    Principal Investigator

    David Sullivan, M.D.

    Department

    Medicine

  • Diane Griffin Lab

    Research in the Diane Griffin Lab focuses on the viral, cellular and immunologic determinants of diseases caused by alphaviruses and the measles virus. Our current studies aim to understand the immune-system mechanisms behind viral clearance and disease enhancement. Our team is also working to understand the pathogenesis of the measles virus, with a focus on developing new vaccines and learning how the virus induces immunosuppression.

    Research Areas: immunology, vaccines, measles, alphavirus, encephalitis

    Principal Investigator

    M. Griffin, M.D., Ph.D.

    Department

    Medicine

  • Drew Pardoll Lab

    The Pardoll Lab focuses on the regulation of antigen-specific T cell responses and studies approaches to modify these responses for immunotherapy. Pardoll has a particular interest in cancer immunology and his lab’s studies on basic immunologic mechanisms have led to the development and design of a number of cancer vaccines and discovery of key checkpoint ligands and receptors, such as PD-L2, LAG-3 and neuritin, many of which are being targeted clinically.

    Our primary pursuits are discovering and elucidating new molecules that regulate immune responses, investigating the biology of regulatory T cells, and better understanding the specific biochemical signatures that allow a patient’s T cells to selectively target cancer cells.

    Research Areas: tumor antigens, cancer, immunotherapy, regulatory T cells, T cells

    Principal Investigator

    Drew Pardoll, M.D., Ph.D.

    Department

    Medicine
    Oncology
    Pathology

  • Elizabeth M. Jaffee, M.D.

    Current projects include:

    The evaluation of mechanisms of immune tolerance to cancer in mouse models of breast and pancreatic cancer. We have characterized the HER-2/neu transgenic mouse model of spontaneous mammary tumors.
    This model demonstrates immune tolerance to the HER-2/neu gene product. This model is being used to better understand the mechanisms of tolerance to tumor. In addition, this model is being used to develop vaccine strategies that can overcome this tolerance and induce immunity potent enough to prevent and treat naturally developing tumors. More recently, we are using a genetic model of pancreatic cancer developed to understand the early inflammatory changes that promote cancer development.

    The identification of human tumor antigens recognized by T cells. We are using a novel functional genetic approach developed in our laboratory. Human tumor specific T cells from vaccinated patients are used to identify immune relevant antigens that are chosen... based on an initial genomic screen of overexpressed gene products. Several candidate targets have been identified and the prevelence of vaccine induced immunity has been assessed .
    This rapid screen to identify relevant antigenic targets will allow us to begin to dissect the mechanisms of tumor immunity induction and downregulation at the molecular level in cancer patients. More recently, we are using proteomics to identify proteins involved in pancreatic cancer development. We recently identified Annexin A2 as a molecule involved in metastases.

    The analysis of antitumor immune responses in patients enrolled on vaccine studies. The focus is on breast and pancreatic cancers. We are atttempting to identify in vitro correlates of in vivo antitumor immunity induced by vaccine strategies developed in the laboratory and currently under study in the clinics.
    view more

    Research Areas: immunology, cancer, anti-cancer drugs

    Lab Website

    Principal Investigator

    Elizabeth Jaffee, M.D.

    Department

    Oncology

  • Franck Housseau Lab

    The Franck Housseau Lab focuses on the role of the microbiome in colorectal tumorigenesis and on developing a better understanding of the tumor immune microenvironment. The lab is currently working to define the biomarkers of a pre-existing antitumor immune response in metastatic colorectal cancer to define a population of patients eligible for checkpoint blockade therapies.

    Research Areas: microbiology, tumor immunology, microbiome, colorectal cancer, cancer, colon cancer, tumor microenvironment, immunotherapy

    Principal Investigator

    Franck Housseau, Ph.D.

    Department

    Oncology

  • HPTN (HIV Prevention Trials Network) Network Lab

    HPTN (HIV Prevention Trials Network) Network Laboratory (NL) is responsible for collecting, testing and reporting results from biological samples; assisting in the development and quality assurance assessment of local laboratory capacity at the Clinical Trials Units (CTUs) participating in HPTN clinical trials (www.hptn.org); and identifying and implementing state-of-the-art assays and technologies to advance the scientific agenda of the Network.

    Research Areas: microbiology, blood disorders, molecular pathology, immunology, cytogenetics, HIV, transfusion medicine, chemistry

    Lab Website

    Principal Investigator

    Susan Eshleman, M.D., Ph.D.

    Department

    Pathology

  • Ivan Borrello Lab

    The Ivan Borrello Lab focuses on the development of a novel approach of adoptive T cell therapy utilizing marrow-infiltrating lymphocytes (MILs) as a more tumor-specific T cell approach. This has led to establishing the first adoptive T cell trials at Johns Hopkins and an exploration of this approach in other diseases, including nonhematologic malignancies. The lab also examines strategies for treating minimal residual disease (MRD) in myeloma with the combination of immune modulation and whole cell-based vaccines.

    Research Areas: immunology, vaccines, multiple myeloma, cancer, translational research, immunotherapy, T cells

    Lab Website

    Principal Investigator

    Ivan Borrello, M.D.

    Department

    Oncology

  • Jeff Bulte Lab

    The clinical development of novel immune and stem cell therapies calls for suitable methods that can follow the fate of cells non-invasively in humans at high resolution. The Bulte Lab has pioneered methods to label cells magnetically (using tiny superparamagnetic iron oxide nanoparticles) in order to make them visible by MR imaging.

    While the lab is doing basic bench-type research, there is a strong interaction with the clinical interventional radiology and oncology groups in order to bring the methodologies into the clinic.

    Research Areas: immunology, stem cells, cancer, MRI, interventional radiology

  • Joel Pomerantz Laboratory

    The Pomerantz Laboratory studies the molecular machinery used by cells to interpret extracellular signals and transduce them to the nucleus to affect changes in gene expression. The accurate response to extracellular signals results in a cell's decision to proliferate, differentiate or die, and it's critical for normal development and physiology. The dysregulation of this machinery underlies the unwarranted expansion or destruction of cell numbers that occurs in human diseases like cancer, autoimmunity, hyperinflammatory states and neurodegenerative disease.

    Current studies in the lab focus on signaling pathways that are important in innate immunity, adaptive immunity and cancer, with particular focus on pathways that regulate the activity of the pleiotropic transcription factor NF-kB.

    Research Areas: immunology, neurodegenerative disorders, cancer, autoimmune, hyperinflammatory states, molecular biology

    Principal Investigator

    Joel Pomerantz, Ph.D.

    Department

    Biological Chemistry

  • John Aucott Lab

    Research in the John Aucott Lab focuses on the development of accurate diagnostic tests for all stages of Lyme disease. We work closely with Dr. Mark Soloski on the Study of Lyme disease Immunology and Clinical Events (SLICE), a longitudinal, matched-control study of patients diagnosed with early untreated Lyme disease. The objective is to use the collected biological samples to help identify novel Lyme disease biomarkers that can inform diagnoses, outcomes and the knowledge about disease pathophysiology.

    Research Areas: clinical outcomes, gender differences, biomarkers, pathophysiology, immune heterogeneity, Lyme disease

    Principal Investigator

    John Aucott, M.D.

    Department

    Medicine

  • Johns Hopkins University Dermatology, Allergy and Clinical Immunology (DACI) Reference Laboratory

    The mission of the Johns Hopkins University Dermatology, Allergy and Clinical Immunology (DACI) Reference Laboratory is to provide comprehensive, high-quality diagnostic allergy and immunology testing to patients throughout North America with asthma, allergy and immunologic disorders. We offer an extensive menu of laboratory tests that includes allergen-specific IgE measurements to approximately 300 pollen, epidermal, mold spore, mite, food, drug, venom and occupational allergen specificities. We specialize in Hymenoptera (insect sting) venom-specific IgE and IgG antibody measurements. In addition, the DACI Laboratory performs hypersensitivity pneumonitis precipitin panels, serum cotinine, and environmental mold measurements.

    Research Areas: immunology, asthma, allergies, allergens, dermatology

    Lab Website

    Principal Investigator

    Robert Hamilton, M.S., Ph.D.

    Department

    Medicine

  1. 1
  2. 2